Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

4WNR

Structure of methanosarcina barkeri Roco2 RocCORdC bound to GDP

Summary for 4WNR
Entry DOI10.2210/pdb4wnr/pdb
DescriptorLeucine-rich-repeat protein, GUANOSINE-5'-DIPHOSPHATE, MAGNESIUM ION, ... (6 entities in total)
Functional Keywordsroco proteins, gad, small g-protein, cor, parkinson's disease, signaling protein
Biological sourceMethanosarcina barkeri
Total number of polymer chains1
Total formula weight41292.31
Authors
Terheyden, S. (deposition date: 2014-10-14, release date: 2014-11-05, Last modification date: 2024-01-10)
Primary citationTerheyden, S.,Ho, F.Y.,Gilsbach, B.K.,Wittinghofer, A.,Kortholt, A.
Revisiting the Roco G-protein cycle.
Biochem.J., 465:139-147, 2015
Cited by
PubMed Abstract: Mutations in leucine-rich-repeat kinase 2 (LRRK2) are the most frequent cause of late-onset Parkinson's disease (PD). LRRK2 belongs to the Roco family of proteins which share a conserved Ras-like G-domain (Roc) and a C-terminal of Roc (COR) domain tandem. The nucleotide state of small G-proteins is strictly controlled by guanine-nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs). Because of contradictory structural and biochemical data, the regulatory mechanism of the LRRK2 Roc G-domain and the RocCOR tandem is still under debate. In the present study, we solved the first nucleotide-bound Roc structure and used LRRK2 and bacterial Roco proteins to characterize the RocCOR function in more detail. Nucleotide binding induces a drastic structural change in the Roc/COR domain interface, a region strongly implicated in patients with an LRRK2 mutation. Our data confirm previous assumptions that the C-terminal subdomain of COR functions as a dimerization device. We show that the dimer formation is independent of nucleotide. The affinity for GDP/GTP is in the micromolar range, the result of which is high dissociation rates in the s-1 range. Thus Roco proteins are unlikely to need GEFs to achieve activation. Monomeric LRRK2 and Roco G-domains have a similar low GTPase activity to small G-proteins. We show that GTPase activity in bacterial Roco is stimulated by the nucleotide-dependent dimerization of the G-domain within the complex. We thus propose that the Roco proteins do not require GAPs to stimulate GTP hydrolysis but stimulate each other by one monomer completing the catalytic machinery of the other.
PubMed: 25317655
DOI: 10.1042/BJ20141095
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.9 Å)
Structure validation

246031

数据于2025-12-10公开中

PDB statisticsPDBj update infoContact PDBjnumon