Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

4UFN

Laboratory evolved variant R-C1B1 of potato epoxide hydrolase StEH1

Summary for 4UFN
Entry DOI10.2210/pdb4ufn/pdb
Related4UFO 4UFP
DescriptorEPOXIDE HYDROLASE, 1,4-DIETHYLENE DIOXIDE (3 entities in total)
Functional Keywordshydrolase, epoxide hydrolysis, alpha/beta-hydrolase, directed evolution, asymmetric syntheses
Biological sourceSOLANUM TUBEROSUM (POTATO)
Total number of polymer chains2
Total formula weight74505.35
Authors
Carlsson, A.J.,Bauer, P.,Nilsson, M.,Dobritzsch, D.,Kamerlin, S.C.L.,Widersten, M. (deposition date: 2015-03-17, release date: 2016-04-13, Last modification date: 2023-12-20)
Primary citationBauer, P.,Carlsson, A.J.,Amrein, B.A.,Dobritzsch, D.,Widersten, M.,Kamerlin, S.C.L.
Conformational Diversity and Enantioconvergence in Potato Epoxide Hydrolase 1.
Org.Biomol.Chem., 14:5639-, 2016
Cited by
PubMed Abstract: Potato epoxide hydrolase 1 (StEH1) is a biocatalytically important enzyme that exhibits rich enantio- and regioselectivity in the hydrolysis of chiral epoxide substrates. In particular, StEH1 has been demonstrated to enantioconvergently hydrolyze racemic mixes of styrene oxide (SO) to yield (R)-1-phenylethanediol. This work combines computational, crystallographic and biochemical analyses to understand both the origins of the enantioconvergent behavior of the wild-type enzyme, as well as shifts in activities and substrate binding preferences in an engineered StEH1 variant, R-C1B1, which contains four active site substitutions (W106L, L109Y, V141K and I155V). Our calculations are able to reproduce both the enantio- and regioselectivities of StEH1, and demonstrate a clear link between different substrate binding modes and the corresponding selectivity, with the preferred binding modes being shifted between the wild-type enzyme and the R-C1B1 variant. Additionally, we demonstrate that the observed changes in selectivity and the corresponding enantioconvergent behavior are due to a combination of steric and electrostatic effects that modulate both the accessibility of the different carbon atoms to the nucleophilic side chain of D105, as well as the interactions between the substrate and protein amino acid side chains and active site water molecules. Being able to computationally predict such subtle effects for different substrate enantiomers, as well as to understand their origin and how they are affected by mutations, is an important advance towards the computational design of improved biocatalysts for enantioselective synthesis.
PubMed: 27049844
DOI: 10.1039/C6OB00060F
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2 Å)
Structure validation

231029

数据于2025-02-05公开中

PDB statisticsPDBj update infoContact PDBjnumon