Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

4UD5

Structural Plasticity of Cid1 Provides a Basis for its RNA Terminal Uridylyl Transferase Activity

Summary for 4UD5
Entry DOI10.2210/pdb4ud5/pdb
Related4UD4
DescriptorPOLY(A) RNA POLYMERASE PROTEIN CID1 (2 entities in total)
Functional Keywordstransferase, caffeine, uridylyltransferase enzyme
Biological sourceSCHIZOSACCHAROMYCES POMBE (FISSION YEAST)
Total number of polymer chains2
Total formula weight83326.89
Authors
Yates, L.A.,Durrant, B.P.,Fleurdepine, S.,Harlos, K.,Norbury, C.J.,Gilbert, R.J.C. (deposition date: 2014-12-07, release date: 2015-03-18, Last modification date: 2023-12-20)
Primary citationYates, L.A.,Durrant, B.P.,Fleurdepine, S.,Harlos, K.,Norbury, C.J.,Gilbert, R.J.C.
Structural Plasticity of Cid1 Provides a Basis for its Distributive RNA Terminal Uridylyl Transferase Activity.
Nucleic Acids Res., 43:2968-, 2015
Cited by
PubMed Abstract: Terminal uridylyl transferases (TUTs) are responsible for the post-transcriptional addition of uridyl residues to RNA 3' ends, leading in some cases to altered stability. The Schizosaccharomyces pombe TUT Cid1 is a model enzyme that has been characterized structurally at moderate resolution and provides insights into the larger and more complex mammalian TUTs, ZCCHC6 and ZCCHC11. Here, we report a higher resolution (1.74 Å) crystal structure of Cid1 that provides detailed evidence for uracil selection via the dynamic flipping of a single histidine residue. We also describe a novel closed conformation of the enzyme that may represent an intermediate stage in a proposed product ejection mechanism. The structural insights gained, combined with normal mode analysis and biochemical studies, demonstrate that the plasticity of Cid1, particularly about a hinge region (N164-N165), is essential for catalytic activity, and provide an explanation for its distributive uridylyl transferase activity. We propose a model clarifying observed differences between the in vitro apparently processive activity and in vivo distributive monouridylylation activity of Cid1. We suggest that modulating the flexibility of such enzymes-for example by the binding of protein co-factors-may allow them alternatively to add single or multiple uridyl residues to the 3' termini of RNA molecules.
PubMed: 25712096
DOI: 10.1093/NAR/GKV122
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.52 Å)
Structure validation

227111

数据于2024-11-06公开中

PDB statisticsPDBj update infoContact PDBjnumon