Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

4RGO

Structure of Staphylococcal Enterotoxin B bound to the neutralizing antibody 14G8

Summary for 4RGO
Entry DOI10.2210/pdb4rgo/pdb
Related4RGM 4RGN
DescriptorEnterotoxin type B, 14G8 heavy chain, 14G8 light chain, ... (5 entities in total)
Functional Keywordsneutralizing antibody, staphylococcal enterotoxin b, toxin-immune system complex, toxin/immune system
Biological sourceStaphylococcus aureus
More
Cellular locationSecreted: P01552
Total number of polymer chains3
Total formula weight76408.27
Authors
Franklin, M.C.,Dutta, K.,Varshney, A.K.,Goger, M.J.,Fries, B.C. (deposition date: 2014-09-30, release date: 2015-01-21, Last modification date: 2024-11-20)
Primary citationDutta, K.,Varshney, A.K.,Franklin, M.C.,Goger, M.,Wang, X.,Fries, B.C.
Mechanisms mediating enhanced neutralization efficacy of staphylococcal enterotoxin B by combinations of monoclonal antibodies.
J.Biol.Chem., 290:6715-6730, 2015
Cited by
PubMed Abstract: Staphylococcal enterotoxin B (SEB) is a superantigen that cross-links the major histocompatibility complex class II and specific V-β chains of the T-cell receptor, thus forming a ternary complex. Developing neutralizing mAb to disrupt the ternary complex and abrogate the resulting toxicity is a major therapeutic challenge because SEB is effective at very low concentrations. We show that combining two SEB-specific mAbs enhances their efficacy, even though one of the two mAbs by itself has no effect on neutralization. Crystallography was employed for fine-mapping conformational epitopes in binary and ternary complexes between SEB and Fab fragments. NMR spectroscopy was used to validate and identify subtle allosteric changes induced by mAbs binding to SEB. The mapping of epitopes established that a combination of different mAbs can enhance efficacy of mAb-mediated protection from SEB induced lethal shock by two different mechanisms: one mAb mixture promoted clearance of the toxin both in vitro and in vivo by FcR-mediated cross-linking and clearance, whereas the other mAb mixture induced subtle allosteric conformational changes in SEB that perturbed formation of the SEB·T-cell receptor·major histocompatibility complex class II trimer. Finally structural information accurately predicted mAb binding to other superantigens that share conformational epitopes with SEB. Fine mapping of conformational epitopes is a powerful tool to establish the mechanism and optimize the action of synergistic mAb combinations.
PubMed: 25572397
DOI: 10.1074/jbc.M114.630715
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.8 Å)
Structure validation

237423

건을2025-06-11부터공개중

PDB statisticsPDBj update infoContact PDBjnumon