4KZO
Crystal Structure Analysis of human IDH1 mutants in complex with NADP+ and Ca2+/alpha-Ketoglutarate
Summary for 4KZO
Entry DOI | 10.2210/pdb4kzo/pdb |
Related | 4L03 4L04 4L06 |
Descriptor | Isocitrate dehydrogenase [NADP] cytoplasmic, CALCIUM ION, NADP NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE, ... (6 entities in total) |
Functional Keywords | cytosolic, oxidoreductase |
Biological source | Homo sapiens (human) |
Cellular location | Cytoplasm: O75874 |
Total number of polymer chains | 3 |
Total formula weight | 147257.86 |
Authors | Concha, N.O.,Smallwood, A.M. (deposition date: 2013-05-30, release date: 2013-07-17, Last modification date: 2024-05-22) |
Primary citation | Rendina, A.R.,Pietrak, B.,Smallwood, A.,Zhao, H.,Qi, H.,Quinn, C.,Adams, N.D.,Concha, N.,Duraiswami, C.,Thrall, S.H.,Sweitzer, S.,Schwartz, B. Mutant IDH1 Enhances the Production of 2-Hydroxyglutarate Due to Its Kinetic Mechanism. Biochemistry, 52:4563-4577, 2013 Cited by PubMed Abstract: The human, cytosolic enzyme isocitrate dehydrogenase 1 (IDH1) reversibly converts isocitrate to α-ketoglutarate (αKG). Cancer-associated somatic mutations in IDH1 result in a loss of this normal function but a gain in a new or neomorphic ability to convert αKG to the oncometabolite 2-hydroxyglutarate (2HG). To improve our understanding of the basis for this phenomenon, we have conducted a detailed kinetic study of wild-type IDH1 as well as the known 2HG-producing clinical R132H and G97D mutants and mechanistic Y139D and (newly described) G97N mutants. In the reductive direction of the normal reaction (αKG to isocitrate), dead-end inhibition studies suggest that wild-type IDH1 goes through a random sequential mechanism, similar to previous reports on related mammalian IDH enzymes. However, analogous experiments studying the reductive neomorphic reaction (αKG to 2HG) with the mutant forms of IDH1 are more consistent with an ordered sequential mechanism, with NADPH binding before αKG. This result was further confirmed by primary kinetic isotope effects for which saturating with αKG greatly reduced the observed isotope effect on (D)(V/K)NADPH. For the mutant IDH1 enzyme, the change in mechanism was consistently associated with reduced efficiencies in the use of αKG as a substrate and enhanced efficiencies using NADPH as a substrate. We propose that the sum of these kinetic changes allows the mutant IDH1 enzymes to reductively trap αKG directly into 2HG, rather than allowing it to react with carbon dioxide and form isocitrate, as occurs in the wild-type enzyme. PubMed: 23731180DOI: 10.1021/bi400514k PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2.204 Å) |
Structure validation
Download full validation report