4IU1
Crystal structure of Leishmania mexicana arginase in complex with inhibitor nor-NOHA
4IU1 の概要
| エントリーDOI | 10.2210/pdb4iu1/pdb |
| 関連するPDBエントリー | 3KV2 4ITY 4IU0 4IU4 4IU5 |
| 分子名称 | Arginase, MANGANESE (II) ION, NOR-N-OMEGA-HYDROXY-L-ARGININE, ... (5 entities in total) |
| 機能のキーワード | arginase fold, hydrolase-hydrolase inhibitor complex, hydrolase/hydrolase inhibitor |
| 由来する生物種 | Leishmania mexicana |
| タンパク質・核酸の鎖数 | 1 |
| 化学式量合計 | 36412.59 |
| 構造登録者 | D'Antonio, E.L.,Ullman, B.,Roberts, S.C.,Gaur Dixit, U.,Wilson, M.E.,Hai, Y.,Christianson, D.W. (登録日: 2013-01-19, 公開日: 2013-01-30, 最終更新日: 2023-09-20) |
| 主引用文献 | D'Antonio, E.L.,Ullman, B.,Roberts, S.C.,Dixit, U.G.,Wilson, M.E.,Hai, Y.,Christianson, D.W. Crystal structure of arginase from Leishmania mexicana and implications for the inhibition of polyamine biosynthesis in parasitic infections. Arch.Biochem.Biophys., 535:163-176, 2013 Cited by PubMed Abstract: Arginase from parasitic protozoa belonging to the genus Leishmania is a potential drug target for the treatment of leishmaniasis because this binuclear manganese metalloenzyme catalyzes the first committed step in the biosynthesis of polyamines that enable cell growth and survival. The high resolution X-ray crystal structures of the unliganded form of Leishmania mexicana arginase (LmARG) and four inhibitor complexes are now reported. These complexes include the reactive substrate analogue 2(S)-amino-6-boronohexanoic acid (ABH) and the hydroxylated substrate analogue nor-N(ω)-hydroxy-l-arginine (nor-NOHA), which are the most potent arginase inhibitors known to date. Comparisons of the LmARG structure with that of the archetypal arginase, human arginase I, reveal that all residues important for substrate binding and catalysis are strictly conserved. However, three regions of tertiary structure differ between the parasitic enzyme and the human enzyme corresponding to the G62 - S71, L161 - C172, and I219 - V230 segments of LmARG. Additionally, variations are observed in salt link interactions that stabilize trimer assembly in LmARG. We also report biological studies in which we demonstrate that localization of LmARG to the glycosome, a unique subcellular organelle peculiar to Leishmania and related parasites, is essential for robust pathogenesis. PubMed: 23583962DOI: 10.1016/j.abb.2013.03.015 主引用文献が同じPDBエントリー |
| 実験手法 | X-RAY DIFFRACTION (1.95 Å) |
構造検証レポート
検証レポート(詳細版)
をダウンロード






