4B46
CetZ1 from Haloferax volcanii - GDP bound monomer
Summary for 4B46
Entry DOI | 10.2210/pdb4b46/pdb |
Related | 4B45 |
Descriptor | CELL DIVISION PROTEIN FTSZ, GUANOSINE-5'-DIPHOSPHATE (3 entities in total) |
Functional Keywords | structural protein, tubulin, archaea, cytoskeleton, cell shape |
Biological source | HALOFERAX VOLCANII |
Cellular location | Cytoplasm : D4GVD7 |
Total number of polymer chains | 1 |
Total formula weight | 42549.98 |
Authors | Aylett, C.H.S.,Duggin, I.G.,Lowe, J. (deposition date: 2012-07-27, release date: 2013-08-14, Last modification date: 2024-05-01) |
Primary citation | Duggin, I.G.,Aylett, C.H.S.,Walsh, J.C.,Michie, K.A.,Wang, Q.,Turnbull, L.,Dawson, E.M.,Harry, E.J.,Whitchurch, C.B.,Amos, A.,Lowe, J. Cetz Tubulin-Like Proteins Control Archaeal Cell Shape Nature, 519:362-, 2015 Cited by PubMed Abstract: Tubulin is a major component of the eukaryotic cytoskeleton, controlling cell shape, structure and dynamics, whereas its bacterial homologue FtsZ establishes the cytokinetic ring that constricts during cell division. How such different roles of tubulin and FtsZ evolved is unknown. Studying Archaea may provide clues as these organisms share characteristics with Eukarya and Bacteria. Here we report the structure and function of proteins from a distinct family related to tubulin and FtsZ, named CetZ, which co-exists with FtsZ in many archaea. CetZ X-ray crystal structures showed the FtsZ/tubulin superfamily fold, and one crystal form contained sheets of protofilaments, suggesting a structural role. However, inactivation of CetZ proteins in Haloferax volcanii did not affect cell division. Instead, CetZ1 was required for differentiation of the irregular plate-shaped cells into a rod-shaped cell type that was essential for normal swimming motility. CetZ1 formed dynamic cytoskeletal structures in vivo, relating to its capacity to remodel the cell envelope and direct rod formation. CetZ2 was also implicated in H. volcanii cell shape control. Our findings expand the known roles of the FtsZ/tubulin superfamily to include archaeal cell shape dynamics, suggesting that a cytoskeletal role might predate eukaryotic cell evolution, and they support the premise that a major function of the microbial rod shape is to facilitate swimming. PubMed: 25533961DOI: 10.1038/NATURE13983 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (1.9 Å) |
Structure validation
Download full validation report
