Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

4NQK

Structure of an Ubiquitin complex

Summary for 4NQK
Entry DOI10.2210/pdb4nqk/pdb
DescriptorProbable ATP-dependent RNA helicase DDX58, Ubiquitin (2 entities in total)
Functional Keywordscard domain, hydrolase-apoptosis complex, hydrolase/apoptosis
Biological sourceHomo sapiens (human)
More
Cellular locationCytoplasm: O95786
Ubiquitin: Cytoplasm (By similarity): P0CG48
Total number of polymer chains10
Total formula weight148217.85
Authors
Peisley, A.,Wu, B.,Hur, S. (deposition date: 2013-11-25, release date: 2014-03-05, Last modification date: 2024-02-28)
Primary citationPeisley, A.,Wu, B.,Xu, H.,Chen, Z.J.,Hur, S.
Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I.
Nature, 509:110-114, 2014
Cited by
PubMed Abstract: Ubiquitin (Ub) has important roles in a wide range of intracellular signalling pathways. In the conventional view, ubiquitin alters the signalling activity of the target protein through covalent modification, but accumulating evidence points to the emerging role of non-covalent interaction between ubiquitin and the target. In the innate immune signalling pathway of a viral RNA sensor, RIG-I, both covalent and non-covalent interactions with K63-linked ubiquitin chains (K63-Ubn) were shown to occur in its signalling domain, a tandem caspase activation and recruitment domain (hereafter referred to as 2CARD). Non-covalent binding of K63-Ubn to 2CARD induces its tetramer formation, a requirement for downstream signal activation. Here we report the crystal structure of the tetramer of human RIG-I 2CARD bound by three chains of K63-Ub2. 2CARD assembles into a helical tetramer resembling a 'lock-washer', in which the tetrameric surface serves as a signalling platform for recruitment and activation of the downstream signalling molecule, MAVS. Ubiquitin chains are bound along the outer rim of the helical trajectory, bridging adjacent subunits of 2CARD and stabilizing the 2CARD tetramer. The combination of structural and functional analyses reveals that binding avidity dictates the K63-linkage and chain-length specificity of 2CARD, and that covalent ubiquitin conjugation of 2CARD further stabilizes the Ub-2CARD interaction and thus the 2CARD tetramer. Our work provides unique insights into the novel types of ubiquitin-mediated signal-activation mechanism, and previously unexpected synergism between the covalent and non-covalent ubiquitin interaction modes.
PubMed: 24590070
DOI: 10.1038/nature13140
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (3.7 Å)
Structure validation

227561

PDB entries from 2024-11-20

PDB statisticsPDBj update infoContact PDBjnumon