Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

4B6U

Solution structure of eIF4E3 in complex with m7GDP

Summary for 4B6U
Entry DOI10.2210/pdb4b6u/pdb
Related4B6V
NMR InformationBMRB: 18667
DescriptorEUKARYOTIC TRANSLATION INITIATION FACTOR 4E TYPE 3, 7N-METHYL-8-HYDROGUANOSINE-5'-DIPHOSPHATE (2 entities in total)
Functional Keywordstranslation
Biological sourceMUS MUSCULUS (HOUSE MOUSE)
Total number of polymer chains1
Total formula weight23322.31
Authors
Osborne, M.J.,Volpon, L.,Kornblatt, J.A.,Culkjovic-Kraljcic, B.,Baguet, A.,Borden, K.L.B. (deposition date: 2012-08-15, release date: 2013-03-06, Last modification date: 2024-06-19)
Primary citationOsborne, M.J.,Volpon, L.,Kornblatt, J.A.,Culjkovic-Kraljcic, B.,Baguet, A.,Borden, K.L.B.
Eif4E3 Acts as a Tumor Suppressor by Utilizing an Atypical Mode of Methyl-7-Guanosine CAP Recognition
Proc.Natl.Acad.Sci.USA, 110:3877-, 2013
Cited by
PubMed Abstract: Recognition of the methyl-7-guanosine (m(7)G) cap structure on mRNA is an essential feature of mRNA metabolism and thus gene expression. Eukaryotic translation initiation factor 4E (eIF4E) promotes translation, mRNA export, proliferation, and oncogenic transformation dependent on this cap-binding activity. eIF4E-cap recognition is mediated via complementary charge interactions of the positively charged m(7)G cap between the negative π-electron clouds from two aromatic residues. Here, we demonstrate that a variant subfamily, eIF4E3, specifically binds the m(7)G cap in the absence of an aromatic sandwich, using instead a different spatial arrangement of residues to provide the necessary electrostatic and van der Waals contacts. Contacts are much more extensive between eIF4E3-cap than other family members. Structural analyses of other cap-binding proteins indicate this recognition mode is atypical. We demonstrate that eIF4E3 relies on this cap-binding activity to act as a tumor suppressor, competing with the growth-promoting functions of eIF4E. In fact, reduced eIF4E3 in high eIF4E cancers suggests that eIF4E3 underlies a clinically relevant inhibitory mechanism that is lost in some malignancies. Taken together, there is more structural plasticity in cap recognition than previously thought, and this is physiologically relevant.
PubMed: 23431134
DOI: 10.1073/PNAS.1216862110
PDB entries with the same primary citation
Experimental method
SOLUTION NMR
Structure validation

229681

PDB entries from 2025-01-08

PDB statisticsPDBj update infoContact PDBjnumon