Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

3UO3

Jac1 co-chaperone from Saccharomyces cerevisiae, 5-182 clone

Summary for 3UO3
Entry DOI10.2210/pdb3uo3/pdb
Related3UO2
DescriptorJ-type co-chaperone JAC1, mitochondrial, ACETATE ION (3 entities in total)
Functional Keywordsstructural genomics, psi-biology, midwest center for structural genomics, mcsg, co-chaperone, j-protein, iron sulfur cluster biogenesis, ssq1 hsp70 chaperone, isu proteins, chaperone
Biological sourceSaccharomyces cerevisiae (Baker's yeast)
Cellular locationMitochondrion matrix : P53193
Total number of polymer chains2
Total formula weight42643.26
Authors
Primary citationCiesielski, S.J.,Schilke, B.A.,Osipiuk, J.,Bigelow, L.,Mulligan, R.,Majewska, J.,Joachimiak, A.,Marszalek, J.,Craig, E.A.,Dutkiewicz, R.
Interaction of j-protein co-chaperone jac1 with fe-s scaffold isu is indispensable in vivo and conserved in evolution.
J.Mol.Biol., 417:1-12, 2012
Cited by
PubMed Abstract: The ubiquitous mitochondrial J-protein Jac1, called HscB in Escherichia coli, and its partner Hsp70 play a critical role in the transfer of Fe-S clusters from the scaffold protein Isu to recipient proteins. Biochemical results from eukaryotic and prokaryotic systems indicate that formation of the Jac1-Isu complex is important for both targeting of the Isu for Hsp70 binding and stimulation of Hsp70's ATPase activity. However, in apparent contradiction, we previously reported that an 8-fold decrease in Jac1's affinity for Isu1 is well tolerated in vivo, raising the question as to whether the Jac1:Isu interaction actually plays an important biological role. Here, we report the determination of the structure of Jac1 from Saccharomyces cerevisiae. Taking advantage of this information and recently published data from the homologous bacterial system, we determined that a total of eight surface-exposed residues play a role in Isu binding, as assessed by a set of biochemical assays. A variant having alanines substituted for these eight residues was unable to support growth of a jac1-Δ strain. However, replacement of three residues caused partial loss of function, resulting in a significant decrease in the Jac1:Isu1 interaction, a slow growth phenotype, and a reduction in the activity of Fe-S cluster-containing enzymes. Thus, we conclude that the Jac1:Isu1 interaction plays an indispensable role in the essential process of mitochondrial Fe-S cluster biogenesis.
PubMed: 22306468
DOI: 10.1016/j.jmb.2012.01.022
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.85 Å)
Structure validation

227111

数据于2024-11-06公开中

PDB statisticsPDBj update infoContact PDBjnumon