3O5T
Structure of DraG-GlnZ complex with ADP
Summary for 3O5T
Entry DOI | 10.2210/pdb3o5t/pdb |
Descriptor | Dinitrogenase reductase activacting glicohydrolase, PII-like protein Pz, MAGNESIUM ION, ... (5 entities in total) |
Functional Keywords | adp binding, hydrolase-transcription complex, hydrolase/transcription |
Biological source | Azospirillum brasilense More |
Total number of polymer chains | 2 |
Total formula weight | 45205.71 |
Authors | Rajendran, C.,Li, X.-D.,Winkler, F.K. (deposition date: 2010-07-28, release date: 2011-10-05, Last modification date: 2023-11-01) |
Primary citation | Rajendran, C.,Gerhardt, E.C.M.,Bjelic, S.,Gasperina, A.,Scarduelli, M.,Pedrosa, F.O.,Chubatsu, L.S.,Merrick, M.,Souza, E.M.,Winkler, F.K.,Huergo, L.F.,Li, X.-D. Crystal structure of the GlnZ-DraG complex reveals a different form of PII-target interaction Proc.Natl.Acad.Sci.USA, 108:18972-18976, 2011 Cited by PubMed Abstract: Nitrogen metabolism in bacteria and archaea is regulated by a ubiquitous class of proteins belonging to the P(II)family. P(II) proteins act as sensors of cellular nitrogen, carbon, and energy levels, and they control the activities of a wide range of target proteins by protein-protein interaction. The sensing mechanism relies on conformational changes induced by the binding of small molecules to P(II) and also by P(II) posttranslational modifications. In the diazotrophic bacterium Azospirillum brasilense, high levels of extracellular ammonium inactivate the nitrogenase regulatory enzyme DraG by relocalizing it from the cytoplasm to the cell membrane. Membrane localization of DraG occurs through the formation of a ternary complex in which the P(II) protein GlnZ interacts simultaneously with DraG and the ammonia channel AmtB. Here we describe the crystal structure of the GlnZ-DraG complex at 2.1 Å resolution, and confirm the physiological relevance of the structural data by site-directed mutagenesis. In contrast to other known P(II) complexes, the majority of contacts with the target protein do not involve the T-loop region of P(II). Hence this structure identifies a different mode of P(II) interaction with a target protein and demonstrates the potential for P(II) proteins to interact simultaneously with two different targets. A structural model of the AmtB-GlnZ-DraG ternary complex is presented. The results explain how the intracellular levels of ATP, ADP, and 2-oxoglutarate regulate the interaction between these three proteins and how DraG discriminates GlnZ from its close paralogue GlnB. PubMed: 22074780DOI: 10.1073/pnas.1108038108 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2.09 Å) |
Structure validation
Download full validation report
