3HHD
Structure of the Human Fatty Acid Synthase KS-MAT Didomain as a Framework for Inhibitor Design.
3HHD の概要
エントリーDOI | 10.2210/pdb3hhd/pdb |
分子名称 | Fatty acid synthase, CHLORIDE ION (3 entities in total) |
機能のキーワード | transferase, fatty acid synthase, multienzyme, megasynthase, fatty acid synthesis, acetylation, cytoplasm, fatty acid biosynthesis, hydrolase, lipid synthesis, lyase, multifunctional enzyme, nad, nadp, oxidoreductase, phosphopantetheine, phosphoprotein, pyridoxal phosphate |
由来する生物種 | Homo sapiens (human) |
細胞内の位置 | Cytoplasm : P49327 |
タンパク質・核酸の鎖数 | 4 |
化学式量合計 | 417979.59 |
構造登録者 | Pappenberger, G.M.,Benz, J.,Thoma, R.,Rudolph, M.G. (登録日: 2009-05-15, 公開日: 2010-02-09, 最終更新日: 2023-09-06) |
主引用文献 | Pappenberger, G.,Benz, J.,Gsell, B.,Hennig, M.,Ruf, A.,Stihle, M.,Thoma, R.,Rudolph, M.G. Structure of the human fatty acid synthase KS-MAT didomain as a framework for inhibitor design. J.Mol.Biol., 397:508-519, 2010 Cited by PubMed Abstract: The human fatty acid synthase (FAS) is a key enzyme in the metabolism of fatty acids and a target for antineoplastic and antiobesity drug development. Due to its size and flexibility, structural studies of mammalian FAS have been limited to individual domains or intermediate-resolution studies of the complete porcine FAS. We describe the high-resolution crystal structure of a large part of human FAS that encompasses the tandem domain of beta-ketoacyl synthase (KS) connected by a linker domain to the malonyltransferase (MAT) domain. Hinge regions that allow for substantial flexibility of the subdomains are defined. The KS domain forms the canonical dimer, and its substrate-binding site geometry differs markedly from that of bacterial homologues but is similar to that of the porcine orthologue. The didomain structure reveals a possible way to generate a small and compact KS domain by omitting a large part of the linker and MAT domains, which could greatly aid in rapid screening of KS inhibitors. In the crystal, the MAT domain exhibits two closed conformations that differ significantly by rigid-body plasticity. This flexibility may be important for catalysis and extends the conformational space previously known for type I FAS and 6-deoxyerythronolide B synthase. PubMed: 20132826DOI: 10.1016/j.jmb.2010.01.066 主引用文献が同じPDBエントリー |
実験手法 | X-RAY DIFFRACTION (2.15 Å) |
構造検証レポート
検証レポート(詳細版)をダウンロード