3EX9
Crystal structure of PhzA/B from Burkholderia cepacia R18194 crystallized in C2221
Summary for 3EX9
Entry DOI | 10.2210/pdb3ex9/pdb |
Related | 3B4O 3B4P 3CNM 3DZL |
Descriptor | Phenazine biosynthesis protein A/B (2 entities in total) |
Functional Keywords | phenazine biosynthesis, ksi, biosynthetic protein |
Biological source | Burkholderia sp. |
Total number of polymer chains | 1 |
Total formula weight | 21531.03 |
Authors | Ahuja, E.G.,Blankenfeldt, W. (deposition date: 2008-10-16, release date: 2008-12-30, Last modification date: 2023-11-01) |
Primary citation | Ahuja, E.G.,Janning, P.,Mentel, M.,Graebsch, A.,Breinbauer, R.,Hiller, W.,Costisella, B.,Thomashow, L.S.,Mavrodi, D.V.,Blankenfeldt, W. PhzA/B Catalyzes the Formation of the Tricycle in Phenazine Biosynthesis. J.Am.Chem.Soc., 130:17053-17061, 2008 Cited by PubMed Abstract: Phenazines are redox-active bacterial secondary metabolites that participate in important biological processes such as the generation of toxic reactive oxygen species and the reduction of environmental iron. Their biosynthesis from chorismic acid depends on enzymes encoded by the phz operon, but many details of the pathway remain unclear. It previously was shown that phenazine biosynthesis involves the symmetrical head-to-tail double condensation of two identical amino-cyclohexenone molecules to a tricyclic phenazine precursor. While this key step can proceed spontaneously in vitro, we show here that it is catalyzed by PhzA/B, a small dimeric protein of the Delta(5)-3-ketosteroid isomerase/nuclear transport factor 2 family, and we reason that this catalysis is required in vivo. Crystal structures in complex with analogues of the substrate and product suggest that PhzA/B accelerates double imine formation by orienting two substrate molecules and by neutralizing the negative charge of tetrahedral intermediates through protonation. HPLC-coupled NMR reveals that the condensation product rearranges further, which is probably important to prevent back-hydrolysis, and may also be catalyzed within the active site of PhzA/B. The rearranged tricyclic product subsequently undergoes oxidative decarboxylation in a metal-independent reaction involving molecular oxygen. This conversion does not seem to require enzymatic catalysis, explaining why phenazine-1-carboxylic acid is a major product even in strains that use phenazine-1,6-dicarboxylic acid as a precursor of strain-specific phenazine derivatives. PubMed: 19053436DOI: 10.1021/ja806325k PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2.2 Å) |
Structure validation
Download full validation report