3A92
Crystal structure of hen egg white lysozyme soaked with 10mM RhCl3
Summary for 3A92
Entry DOI | 10.2210/pdb3a92/pdb |
Related | 3A8Z 3A90 3A91 3A93 3A94 3A95 3A96 |
Descriptor | Lysozyme C, SODIUM ION, CHLORIDE ION, ... (6 entities in total) |
Functional Keywords | hydrolase, allergen, antimicrobial, bacteriolytic enzyme, disulfide bond, glycosidase |
Biological source | Gallus gallus (chicken) |
Cellular location | Secreted: P00698 |
Total number of polymer chains | 1 |
Total formula weight | 15162.68 |
Authors | Abe, S.,Koshiyama, T.,Ohki, T.,Hikage, T.,Watanabe, Y.,Ueno, T. (deposition date: 2009-10-15, release date: 2010-03-09, Last modification date: 2024-10-30) |
Primary citation | Ueno, T.,Abe, S.,Koshiyama, T.,Ohki, T.,Hikage, T.,Watanabe, Y. Elucidation of Metal-Ion Accumulation Induced by Hydrogen Bonds on Protein Surfaces by Using Porous Lysozyme Crystals Containing Rh(III) Ions as the Model Surfaces Chemistry, 16:2730-2740, 2010 Cited by PubMed Abstract: Metal-ion accumulation on protein surfaces is a crucial step in the initiation of small-metal clusters and the formation of inorganic materials in nature. This event is expected to control the nucleation, growth, and position of the materials. There remain many unknowns, as to how proteins affect the initial process at the atomic level, although multistep assembly processes of the materials formation by both native and model systems have been clarified at the macroscopic level. Herein the cooperative effects of amino acids and hydrogen bonds promoting metal accumulation reactions are clarified by using porous hen egg white lysozyme (HEWL) crystals containing Rh(III) ions, as model protein surfaces for the reactions. The experimental results reveal noteworthy implications for initiation of metal accumulation, which involve highly cooperative dynamics of amino acids and hydrogen bonds: i) Disruption of hydrogen bonds can induce conformational changes of amino-acid residues to capture Rh(III) ions. ii) Water molecules pre-organized by hydrogen bonds can stabilize Rh(III) coordination as aqua ligands. iii) Water molecules participating in hydrogen bonds with amino-acid residues can be replaced by Rh(III) ions to form polynuclear structures with the residues. iv) Rh(III) aqua complexes are retained on amino-acid residues through stabilizing hydrogen bonds even at low pH (approximately 2). These metal-protein interactions including hydrogen bonds may promote native metal accumulation reactions and also may be useful in the preparation of new inorganic materials that incorporate proteins. PubMed: 20146274DOI: 10.1002/chem.200903269 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (1.5 Å) |
Structure validation
Download full validation report