2N2A
Spatial structure of HER2/ErbB2 dimeric transmembrane domain in the presence of cytoplasmic juxtamembrane domains
Summary for 2N2A
Entry DOI | 10.2210/pdb2n2a/pdb |
NMR Information | BMRB: 25593 |
Descriptor | Receptor tyrosine-protein kinase erbB-2 (1 entity in total) |
Functional Keywords | her2, erbb2, tyrosine kinase, activation, transmembrane, membrane protein |
Biological source | Homo sapiens (human) |
Cellular location | Isoform 1: Cell membrane; Single-pass type I membrane protein. Isoform 2: Cytoplasm. Isoform 3: Cytoplasm: P04626 |
Total number of polymer chains | 2 |
Total formula weight | 13019.72 |
Authors | Bragin, P.E.,Mineev, K.S.,Bocharov, E.,Bocharova, O.,Arseniev, A. (deposition date: 2015-05-05, release date: 2016-02-24, Last modification date: 2024-05-15) |
Primary citation | Bragin, P.E.,Mineev, K.S.,Bocharova, O.V.,Volynsky, P.E.,Bocharov, E.V.,Arseniev, A.S. HER2 Transmembrane Domain Dimerization Coupled with Self-Association of Membrane-Embedded Cytoplasmic Juxtamembrane Regions. J.Mol.Biol., 428:52-61, 2016 Cited by PubMed Abstract: Receptor tyrosine kinases of the human epidermal growth factor receptor (HER or ErbB) family transduce biochemical signals across plasma membrane, playing a significant role in vital cellular processes and in various cancers. Inactive HER/ErbB receptors exist in equilibrium between the monomeric and unspecified pre-dimerized states. After ligand binding, the receptors are involved in strong lateral dimerization with proper assembly of their extracellular ligand-binding, single-span transmembrane, and cytoplasmic kinase domains. The dimeric conformation of the HER2 transmembrane domain that is believed to support the cytoplasmic kinase domain configuration corresponding to the receptor active state was previously described in lipid bicelles. Here we used high-resolution NMR spectroscopy in another membrane-mimicking micellar environment and identified an alternative HER2 transmembrane domain dimerization coupled with self-association of membrane-embedded cytoplasmic juxtamembrane region. Such a dimerization mode appears to be capable of effectively inhibiting the receptor kinase activity. This finding refines the molecular mechanism regarding the signal propagation steps from the extracellular to cytoplasmic domains of HER/ErbB receptors. PubMed: 26585403DOI: 10.1016/j.jmb.2015.11.007 PDB entries with the same primary citation |
Experimental method | SOLUTION NMR |
Structure validation
Download full validation report
