2MY2
Snu17p-Bud13p structure intermediate during RES complex assembly
Summary for 2MY2
Entry DOI | 10.2210/pdb2my2/pdb |
Related | 2MKC 2MY3 |
NMR Information | BMRB: 25442 |
Descriptor | U2 snRNP component IST3, Pre-mRNA-splicing factor CWC26 (2 entities in total) |
Functional Keywords | spliceosome, snu17p, ist3p, pml1p, heterodimer, cooperativity, res, splicing, rrm |
Biological source | Saccharomyces cerevisiae (Baker's yeast) More |
Cellular location | Cytoplasm: P40565 P46947 |
Total number of polymer chains | 2 |
Total formula weight | 18384.37 |
Authors | Wysoczanski, P.,Becker, S.,Zweckstetter, M. (deposition date: 2015-01-19, release date: 2015-08-12, Last modification date: 2024-05-15) |
Primary citation | Wysoczanski, P.,Becker, S.,Zweckstetter, M. Structures of intermediates during RES complex assembly. Sci Rep, 5:12545-12545, 2015 Cited by PubMed Abstract: The action of the spliceosome depends on the stepwise cooperative assembly and disassembly of its components. Very strong cooperativity was observed for the RES (Retention and Splicing) hetero-trimeric complex where the affinity from binary to tertiary interactions changes more than 100-fold and affects RNA binding. The RES complex is involved in splicing regulation and retention of not properly spliced pre-mRNA with its three components--Snu17p, Pml1p and Bud13p--giving rise to the two possible intermediate dimeric complexes Pml1p-Snu17p and Bud13p-Snu17p. Here we determined the three-dimensional structure and dynamics of the Pml1p-Snu17p and Bud13p-Snu17p dimers using liquid state NMR. We demonstrate that localized as well as global changes occur along the RES trimer assembly pathway. The stepwise rigidification of the Snu17p structure following the binding of Pml1p and Bud13p provides a basis for the strong cooperative nature of RES complex assembly. PubMed: 26212312DOI: 10.1038/srep12545 PDB entries with the same primary citation |
Experimental method | SOLUTION NMR |
Structure validation
Download full validation report