Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

2PZW

Crystal structure of Staphylococcal nuclease variant V66N/P117G/H124L/S128A at room temperature

Summary for 2PZW
Entry DOI10.2210/pdb2pzw/pdb
Related1U9R 2PW5 2PW7 2PYK 2PZT 2PZU
DescriptorThermonuclease (2 entities in total)
Functional Keywordsstaphylococcal nuclease, nuclease, hyperstable variant, internal waters, hydrolase
Biological sourceStaphylococcus aureus
Cellular locationSecreted (By similarity): Q8NXI6
Total number of polymer chains1
Total formula weight16777.25
Authors
Schlessman, J.L.,Abe, C.,Garcia-Moreno, E.B. (deposition date: 2007-05-18, release date: 2008-05-20, Last modification date: 2024-04-03)
Primary citationSchlessman, J.L.,Abe, C.,Gittis, A.,Karp, D.A.,Dolan, M.A.,Garcia-Moreno, E.B.
Crystallographic study of hydration of an internal cavity in engineered proteins with buried polar or ionizable groups.
Biophys.J., 94:3208-3216, 2008
Cited by
PubMed Abstract: Although internal water molecules are essential for the structure and function of many proteins, the structural and physical factors that govern internal hydration are poorly understood. We have examined the molecular determinants of internal hydration systematically, by solving the crystal structures of variants of staphylococcal nuclease with Gln-66, Asn-66, and Tyr-66 at cryo (100 K) and room (298 K) temperatures, and comparing them with existing cryo and room temperature structures of variants with Glu-66, Asp-66, Lys-66, Glu-92 or Lys-92 obtained under conditions of pH where the internal ionizable groups are in the neutral state. At cryogenic temperatures the polar moieties of all these internal side chains are hydrated except in the cases of Lys-66 and Lys-92. At room temperature the internal water molecules were observed only in variants with Glu-66 and Tyr-66; water molecules in the other variants are probably present but they are disordered and therefore undetectable crystallographically. Each internal water molecule establishes between 3 and 5 hydrogen bonds with the protein or with other internal water molecules. The strength of interactions between internal polar side chains and water molecules seems to decrease from carboxylic acids to amides to amines. Low temperature, low cavity volume, and the presence of oxygen atoms in the cavity increase the positional stability of internal water molecules. This set of structures and the physical insight they contribute into internal hydration will be useful for the development and benchmarking of computational methods for artificial hydration of pockets, cavities, and active sites in proteins.
PubMed: 18178652
DOI: 10.1529/biophysj.107.122473
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.1 Å)
Structure validation

227561

PDB entries from 2024-11-20

PDB statisticsPDBj update infoContact PDBjnumon