Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

2N4T

NMR structure of Fbp28 WW domain L453W mutant

Summary for 2N4T
Entry DOI10.2210/pdb2n4t/pdb
Related1E0L 2N4R 2N4S 2N4U 2N4V 2N4W
NMR InformationBMRB: 25680
DescriptorTranscription elongation regulator 1 (1 entity in total)
Functional Keywordsww domain, transcription
Biological sourceHomo sapiens (human)
Cellular locationNucleus : O14776
Total number of polymer chains1
Total formula weight4437.76
Authors
Medina, J.,Macias, M.,Martin-Malpartida, P.,Scheraga, H.A. (deposition date: 2015-07-01, release date: 2015-10-21, Last modification date: 2024-05-15)
Primary citationMaisuradze, G.G.,Medina, J.,Kachlishvili, K.,Krupa, P.,Mozolewska, M.A.,Martin-Malpartida, P.,Maisuradze, L.,Macias, M.J.,Scheraga, H.A.
Preventing fibril formation of a protein by selective mutation.
Proc.Natl.Acad.Sci.USA, 112:13549-13554, 2015
Cited by
PubMed Abstract: The origins of formation of an intermediate state involved in amyloid formation and ways to prevent it are illustrated with the example of the Formin binding protein 28 (FBP28) WW domain, which folds with biphasic kinetics. Molecular dynamics of protein folding trajectories are used to examine local and global motions and the time dependence of formation of contacts between C(α)s and C(β)s of selected pairs of residues. Focus is placed on the WT FBP28 WW domain and its six mutants (L26D, L26E, L26W, E27Y, T29D, and T29Y), which have structures that are determined by high-resolution NMR spectroscopy. The origins of formation of an intermediate state are elucidated, viz. as formation of hairpin 1 by a hydrophobic collapse mechanism causing significant delay of formation of both hairpins, especially hairpin 2, which facilitates the emergence of an intermediate state. It seems that three-state folding is a major folding scenario for all six mutants and WT. Additionally, two-state and downhill folding scenarios were identified in ∼ 15% of the folding trajectories for L26D and L26W, in which both hairpins are formed by the Matheson-Scheraga mechanism much faster than in three-state folding. These results indicate that formation of hairpins connecting two antiparallel β-strands determines overall folding. The correlations between the local and global motions identified for all folding trajectories lead to the identification of the residues making the main contributions in the formation of the intermediate state. The presented findings may provide an understanding of protein folding intermediates in general and lead to a procedure for their prevention.
PubMed: 26483482
DOI: 10.1073/pnas.1518298112
PDB entries with the same primary citation
Experimental method
SOLUTION NMR
Structure validation

229183

PDB entries from 2024-12-18

PDB statisticsPDBj update infoContact PDBjnumon