Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

2LP0

The solution structure of homeodomain-protein complex

Summary for 2LP0
Entry DOI10.2210/pdb2lp0/pdb
NMR InformationBMRB: 17407
DescriptorHomeobox protein Hox-C9, Geminin (2 entities in total)
Functional Keywordshomeodomain, transcription-cell cycle complex, transcription/cell cycle
Biological sourceHomo sapiens (human)
More
Cellular locationNucleus: P31274
Cytoplasm: O75496
Total number of polymer chains2
Total formula weight10069.45
Authors
Liu, C.,Zhou, B.,Xu, Z.,Zhu, G. (deposition date: 2012-01-29, release date: 2012-06-06, Last modification date: 2024-05-15)
Primary citationZhou, B.,Liu, C.,Xu, Z.,Zhu, G.
Structural basis for homeodomain recognition by the cell-cycle regulator Geminin
Proc.Natl.Acad.Sci.USA, 2012
Cited by
PubMed Abstract: Homeodomain-containing transcription factors play a fundamental role in the regulation of numerous developmental and cellular processes. Their multiple regulatory functions are accomplished through context-dependent inputs of target DNA sequences and collaborating protein partners. Previous studies have well established the sequence-specific DNA binding to homeodomains; however, little is known about how protein partners regulate their functions through targeting homeodomains. Here we report the solution structure of the Hox homeodomain in complex with the cell-cycle regulator, Geminin, which inhibits Hox transcriptional activity and enrolls Hox in cell proliferative control. Side-chain carboxylates of glutamates and aspartates in the C terminus of Geminin generate an overall charge pattern resembling the DNA phosphate backbone. These residues provide electrostatic interactions with homeodomain, which combine with the van der Waals contacts to form the stereospecific complex. We further showed that the interaction with Geminin is homeodomain subclass-selective and Hox paralog-specific, which relies on the stapling role of residues R43 and M54 in helix III and the basic amino acid cluster in the N terminus. Interestingly, we found that the C-terminal residue Ser184 of Geminin could be phosphorylated by Casein kinase II, resulting in the enhanced binding to Hox and more potent inhibitory effect on Hox transcriptional activity, indicating an additional layer of regulation. This structure provides insight into the molecular mechanism underlying homeodomain-protein recognition and may serve as a paradigm for interactions between homeodomains and DNA-competitive peptide inhibitors.
PubMed: 22615398
DOI: 10.1073/pnas.1200874109
PDB entries with the same primary citation
Experimental method
SOLUTION NMR
Structure validation

227344

PDB entries from 2024-11-13

PDB statisticsPDBj update infoContact PDBjnumon