Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

1ZDR

DHFR from Bacillus Stearothermophilus

Summary for 1ZDR
Entry DOI10.2210/pdb1zdr/pdb
Descriptordihydrofolate reductase, SULFATE ION, GLYCEROL, ... (4 entities in total)
Functional Keywordsdhfr, nadp, oxidoreductase
Biological sourceGeobacillus stearothermophilus
Total number of polymer chains2
Total formula weight38015.51
Authors
Kim, H.S.,Damo, S.M.,Lee, S.Y.,Wemmer, D.,Klinman, J.P. (deposition date: 2005-04-14, release date: 2005-08-30, Last modification date: 2023-08-23)
Primary citationKim, H.S.,Damo, S.M.,Lee, S.Y.,Wemmer, D.,Klinman, J.P.
Structure and hydride transfer mechanism of a moderate thermophilic dihydrofolate reductase from Bacillus stearothermophilus and comparison to its mesophilic and hyperthermophilic homologues.
Biochemistry, 44:11428-11439, 2005
Cited by
PubMed Abstract: Dihydrofolate reductase (DHFR) from a moderate thermophilic organism, Bacillus stearothermophilus, has been cloned and expressed. Physical characterization of the protein (BsDHFR) indicates that it is a monomeric protein with a molecular mass of 18,694.6 Da (0.8), coincident with the mass of 18 694.67 Da calculated from the primary sequence. Determination of the X-ray structure of BsDHFR provides the first structure for a monomeric DHFR from a thermophilic organism, indicating a high degree of conservation of structure in relation to all chromosomal DHFRs. Structurally based sequence alignment of DHFRs indicates the following levels of sequence identity and similarity for BsDHFR: 38 and 58% with Escherichia coli, 35 and 56% with Lactobacillus casei, and 23 and 40% with Thermotoga maritima, respectively. Steady state kinetic isotope effect studies indicate an ordered kinetic mechanism at elevated temperatures, with NADPH binding first to the enzyme. This converts to a more random mechanism at reduced temperatures, reflected in a greatly reduced K(m) for dihydrofolate at 20 degrees C in relation to that at 60 degrees C. A reduction in either temperature or pH reduces the degree to which the hydride transfer step is rate-determining for the second-order reaction of DHF with the enzyme-NADPH binary complex. Transient state kinetics have been used to study the temperature dependence of the isotope effect on hydride transfer at pH 9 between 10 and 50 degrees C. The data support rate-limiting hydride transfer with a moderate enthalpy of activation (E(a) = 5.5 kcal/mol) and a somewhat greater temperature dependence for the kinetic isotope effect than predicted from classical behavior [A(H)/A(D) = 0.57 (0.15)]. Comparison of kinetic parameters for BsDHFR to published data for DHFR from E. coli and T. maritima shows a decreasing trend in efficiency of hydride transfer with increasing thermophilicity of the protein. These results are discussed in the context of the capacity of each enzyme to optimize H-tunneling from donor (NADPH) to acceptor (DHF) substrates.
PubMed: 16114879
DOI: 10.1021/bi050630j
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2 Å)
Structure validation

237735

数据于2025-06-18公开中

PDB statisticsPDBj update infoContact PDBjnumon