1R53
Crystal structure of the bifunctional chorismate synthase from Saccharomyces cerevisiae
Summary for 1R53
Entry DOI | 10.2210/pdb1r53/pdb |
Related | 1R52 |
Descriptor | Chorismate synthase (2 entities in total) |
Functional Keywords | two layers alpha-beta, lyase |
Biological source | Saccharomyces cerevisiae (baker's yeast) |
Total number of polymer chains | 1 |
Total formula weight | 41721.14 |
Authors | Quevillon-Cheruel, S.,Leulliot, N.,Meyer, P.,Graille, M.,Bremang, M.,Blondeau, K.,Sorel, I.,Poupon, A.,Janin, J.,van Tilbeurgh, H. (deposition date: 2003-10-09, release date: 2003-12-23, Last modification date: 2024-03-13) |
Primary citation | Quevillon-Cheruel, S.,Leulliot, N.,Meyer, P.,Graille, M.,Bremang, M.,Blondeau, K.,Sorel, I.,Poupon, A.,Janin, J.,van Tilbeurgh, H. Crystal structure of the bifunctional chorismate synthase from Saccharomyces cerevisiae J.Biol.Chem., 279:619-625, 2004 Cited by PubMed Abstract: Chorismate synthase (EC 4.2.3.5), the seventh enzyme in the shikimate pathway, catalyzes the transformation of 5-enolpyruvylshikimate 3-phosphate (EPSP) to chorismate, which is the last common precursor in the biosynthesis of numerous aromatic compounds in bacteria, fungi, and plants. The chorismate synthase reaction involves a 1,4-trans-elimination of phosphoric acid from EPSP and has an absolute requirement for reduced FMN as a cofactor. We have determined the three-dimensional x-ray structure of the yeast chorismate synthase from selenomethionine-labeled crystals at 2.2-A resolution. The structure shows a novel betaalphabetaalpha fold consisting of an alternate tight packing of two alpha-helical and two beta-sheet layers, showing no resemblance to any documented protein structure. The molecule is arranged as a tight tetramer with D2 symmetry, in accordance with its quaternary structure in solution. Electron density is missing for 23% of the amino acids, spread over sequence regions that in the three-dimensional structure converge on the surface of the protein. Many totally conserved residues are contained within these regions, and they probably form a structured but mobile domain that closes over a cleft upon substrate binding and catalysis. This hypothesis is supported by previously published spectroscopic measurements implying that the enzyme undergoes considerable structural changes upon binding of both FMN and EPSP. PubMed: 14573601DOI: 10.1074/jbc.M310380200 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2.2 Å) |
Structure validation
Download full validation report