1O6Y
Catalytic domain of PknB kinase from Mycobacterium tuberculosis
Summary for 1O6Y
Entry DOI | 10.2210/pdb1o6y/pdb |
Descriptor | SERINE/THREONINE-PROTEIN KINASE PKNB, PHOSPHOMETHYLPHOSPHONIC ACID ADENYLATE ESTER, MAGNESIUM ION, ... (4 entities in total) |
Functional Keywords | serine/threonine protein kinase, transferase, psi, protein structure initiative, tb structural genomics consortium, tb, tbsgc |
Biological source | MYCOBACTERIUM TUBERCULOSIS |
Total number of polymer chains | 1 |
Total formula weight | 33012.32 |
Authors | Ortiz-Lombardia, M.,Pompeo, F.,Boitel, B.,Alzari, P.M.,TB Structural Genomics Consortium (TBSGC) (deposition date: 2002-10-21, release date: 2003-01-30, Last modification date: 2023-12-13) |
Primary citation | Ortiz-Lombardia, M.,Pompeo, F.,Boitel, B.,Alzari, P.M. Crystal Structure of the Catalytic Domain of the Pknb Serine/Threonine Kinase from Mycobacterium Tuberculosis J.Biol.Chem., 278:13094-, 2003 Cited by PubMed Abstract: With the advent of the sequencing programs of prokaryotic genomes, many examples of the presence of serine/threonine protein kinases in these organisms have been identified. Moreover, these kinases could be classified as homologues of those belonging to the well characterized superfamily of the eukaryotic serine/threonine and tyrosine kinases. Eleven such kinases were recognized in the genome of Mycobacterium tuberculosis. Here we report the crystal structure of an active form of PknB, one of the four M. tuberculosis kinases that are conserved in the downsized genome of Mycobacterium leprae and are therefore presumed to play an important role in the processes that regulate the complex life cycle of mycobacteria. Our structure confirms again the extraordinary conservation of the protein kinase fold and constitutes a landmark that extends this conservation across the evolutionary distance between high eukaryotes and eubacteria. The structure of PknB, in complex with a nucleotide triphosphate analog, reveals an enzyme in the active state with an unprecedented arrangement of the Gly-rich loop associated with a new conformation of the nucleotide gamma-phosphoryl group. It presents as well a partially disordered activation loop, suggesting an induced fit mode of binding for the so far unknown substrates of this kinase or for some modulating factor(s). PubMed: 12551895DOI: 10.1074/JBC.M300660200 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2.2 Å) |
Structure validation
Download full validation report