1LA1
Gro-EL Fragment (Apical Domain) Comprising Residues 188-379
Summary for 1LA1
Entry DOI | 10.2210/pdb1la1/pdb |
Related | 1DK7 1KID |
Descriptor | GroEL (2 entities in total) |
Functional Keywords | molecular chaperone, protein folding, chaperone |
Biological source | Escherichia coli |
Cellular location | Cytoplasm : P0A6F5 |
Total number of polymer chains | 1 |
Total formula weight | 20727.85 |
Authors | Ashcroft, A.E.,Brinker, A.,Coyle, J.E.,Weber, F.,Kaiser, M.,Moroder, L.,Parsons, M.R.,Jager, J.,Hartl, U.F.,Hayer-Hartl, M.,Radford, S.E. (deposition date: 2002-03-27, release date: 2002-04-03, Last modification date: 2023-08-16) |
Primary citation | Ashcroft, A.E.,Brinker, A.,Coyle, J.E.,Weber, F.,Kaiser, M.,Moroder, L.,Parsons, M.R.,Jager, J.,Hartl, U.F.,Hayer-Hartl, M.,Radford, S.E. Structural plasticity and noncovalent substrate binding in the GroEL apical domain. A study using electrospay ionization mass spectrometry and fluorescence binding studies. J.Biol.Chem., 277:33115-33126, 2002 Cited by PubMed Abstract: Advances in understanding how GroEL binds to non-native proteins are reported. Conformational flexibility in the GroEL apical domain, which could account for the variety of substrates that GroEL binds, is illustrated by comparison of several independent crystallographic structures of apical domain constructs that show conformational plasticity in helices H and I. Additionally, ESI-MS indicates that apical domain constructs have co-populated conformations at neutral pH. To assess the ability of different apical domain conformers to bind co-chaperone and substrate, model peptides corresponding to the mobile loop of GroES and to helix D from rhodanese were studied. Analysis of apical domain-peptide complexes by ESI-MS indicates that only the folded or partially folded apical domain conformations form complexes that survive gas phase conditions. Fluorescence binding studies show that the apical domain can fully bind both peptides independently. No competition for binding was observed, suggesting the peptides have distinct apical domain-binding sites. Blocking the GroES-apical domain-binding site in GroEL rendered the chaperonin inactive in binding GroES and in assisting the folding of denatured rhodanese, but still capable of binding non-native proteins, supporting the conclusion that GroES and substrate proteins have, at least partially, distinct binding sites even in the intact GroEL tetradecamer. PubMed: 12065585DOI: 10.1074/jbc.M203398200 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2.06 Å) |
Structure validation
Download full validation report