1KTA
HUMAN BRANCHED CHAIN AMINO ACID AMINOTRANSFERASE : THREE DIMENSIONAL STRUCTURE OF THE ENZYME IN ITS PYRIDOXAMINE PHOSPHATE FORM.
1KTA の概要
エントリーDOI | 10.2210/pdb1kta/pdb |
関連するPDBエントリー | 1EKF 1EKP 1EKV 1KT8 |
分子名称 | BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE, MITOCHONDRIAL, 4'-DEOXY-4'-AMINOPYRIDOXAL-5'-PHOSPHATE, ACETIC ACID, ... (6 entities in total) |
機能のキーワード | fold type iv, transferase |
由来する生物種 | Homo sapiens (human) |
細胞内の位置 | Isoform A: Mitochondrion. Isoform B: Cytoplasm: O15382 |
タンパク質・核酸の鎖数 | 2 |
化学式量合計 | 83860.95 |
構造登録者 | Yennawar, N.H.,Conway, M.E.,Yennawar, H.P.,Farber, G.K.,Hutson, S.M. (登録日: 2002-01-15, 公開日: 2002-11-20, 最終更新日: 2024-02-14) |
主引用文献 | Yennawar, N.H.,Conway, M.E.,Yennawar, H.P.,Farber, G.K.,Hutson, S.M. Crystal structures of human mitochondrial branched chain aminotransferase reaction intermediates: ketimine and pyridoxamine phosphate forms Biochemistry, 41:11592-11601, 2002 Cited by PubMed Abstract: The three-dimensional structures of the isoleucine ketimine and the pyridoxamine phosphate forms of human mitochondrial branched chain aminotransferase (hBCATm) have been determined crystallographically at 1.9 A resolution. The hBCATm-catalyzed transamination can be described in molecular terms together with the earlier solved pyridoxal phosphate forms of the enzyme. The active site lysine, Lys202, undergoes large conformational changes, and the pyridine ring of the cofactor tilts by about 18 degrees during catalysis. A major determinant of the enzyme's substrate and stereospecificity for L-branched chain amino acids is a group of hydrophobic residues that form three hydrophobic surfaces and lock the side chain in place. Short-chain aliphatic amino acid side chains are unable to interact through van der Waals contacts with any of the surfaces whereas bulky aromatic side chains would result in significant steric hindrance. As shown by modeling, and in agreement with previous biochemical data, glutamate but not aspartate can form hydrogen bond interactions. The carboxylate group of the bound isoleucine is on the same side as the phosphate group of the cofactor. These active site interactions are largely retained in a model of the human cytosolic branched chain aminotransferase (hBCATc), suggesting that residues in the second tier of interactions are likely to determine the specificity of hBCATc for the drug gabapentin. Finally, the structures reveal a unique role for cysteine residues in the mammalian BCAT. Cys315 and Cys318, which immediately follow a beta-turn (residues 311-314) and are located just outside the active site, form an unusual thiol-thiolate hydrogen bond. This beta-turn positions Thr313 for its interaction with the pyridoxal phosphate oxygens and substrate alpha-carboxylate group. PubMed: 12269802DOI: 10.1021/bi020221c 主引用文献が同じPDBエントリー |
実験手法 | X-RAY DIFFRACTION (1.9 Å) |
構造検証レポート
検証レポート(詳細版)をダウンロード