1JGI
Crystal Structure of the Active Site Mutant Glu328Gln of Amylosucrase from Neisseria polysaccharea in Complex with the Natural Substrate Sucrose
1JGI の概要
エントリーDOI | 10.2210/pdb1jgi/pdb |
関連するPDBエントリー | 1JG9 |
関連するBIRD辞書のPRD_ID | PRD_900003 |
分子名称 | amylosucrase, beta-D-fructofuranose-(2-1)-alpha-D-glucopyranose (3 entities in total) |
機能のキーワード | active site mutant glu328gln, sucrose complex, transferase |
由来する生物種 | Neisseria polysaccharea |
細胞内の位置 | Secreted : Q9ZEU2 |
タンパク質・核酸の鎖数 | 1 |
化学式量合計 | 71930.41 |
構造登録者 | |
主引用文献 | Mirza, O.,Skov, L.K.,Remaud-Simeon, M.,Potocki de Montalk, G.,Albenne, C.,Monsan, P.,Gajhede, M. Crystal structures of amylosucrase from Neisseria polysaccharea in complex with D-glucose and the active site mutant Glu328Gln in complex with the natural substrate sucrose. Biochemistry, 40:9032-9039, 2001 Cited by PubMed Abstract: The structure of amylosucrase from Neisseria polysaccharea in complex with beta-D-glucose has been determined by X-ray crystallography at a resolution of 1.66 A. Additionally, the structure of the inactive active site mutant Glu328Gln in complex with sucrose has been determined to a resolution of 2.0 A. The D-glucose complex shows two well-defined D-glucose molecules, one that binds very strongly in the bottom of a pocket that contains the proposed catalytic residues (at the subsite -1), in a nonstrained (4)C(1) conformation, and one that binds in the packing interface to a symmetry-related molecule. A third weaker D-glucose-binding site is located at the surface near the active site pocket entrance. The orientation of the D-glucose in the active site emphasizes the Glu328 role as the general acid/base. The binary sucrose complex shows one molecule bound in the active site, where the glucosyl moiety is located at the alpha-amylase -1 position and the fructosyl ring occupies subsite +1. Sucrose effectively blocks the only visible access channel to the active site. From analysis of the complex it appears that sucrose binding is primarily obtained through enzyme interactions with the glucosyl ring and that an important part of the enzyme function is a precise alignment of a lone pair of the linking O1 oxygen for hydrogen bond interaction with Glu328. The sucrose specificity appears to be determined primarily by residues Asp144, Asp394, Arg446, and Arg509. Both Asp394 and Arg446 are located in an insert connecting beta-strand 7 and alpha-helix 7 that is much longer in amylosucrase compared to other enzymes from the alpha-amylase family (family 13 of the glycoside hydrolases). PubMed: 11467966DOI: 10.1021/bi010706l 主引用文献が同じPDBエントリー |
実験手法 | X-RAY DIFFRACTION (2 Å) |
構造検証レポート
検証レポート(詳細版)をダウンロード