Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

1EUE

RAT OUTER MITOCHONDRIAL MEMBRANE CYTOCHROME B5

Summary for 1EUE
Entry DOI10.2210/pdb1eue/pdb
Related1awp
DescriptorCYTOCHROME B5, PROTOPORPHYRIN IX CONTAINING FE (3 entities in total)
Functional Keywordscytochrome, heme, electron transport
Biological sourceRattus norvegicus (Norway rat)
Cellular locationMitochondrion outer membrane: P04166
Total number of polymer chains2
Total formula weight20924.63
Authors
Oganesyan, V.,Zhang, X. (deposition date: 2000-04-19, release date: 2001-04-04, Last modification date: 2023-08-09)
Primary citationWirtz, M.,Oganesyan, V.,Zhang, X.,Studer, J.,Rivera, M.
Modulation of redox potential in electron transfer proteins: effects of complex formation on the active site microenvironment of cytochrome b5.
FARADAY DISC.CHEM.SOC, 116:221-234, 2001
Cited by
PubMed Abstract: The reduction potential of cytochrome b5 is modulated via the formation of a complex with polylysine at the electrode surface (Rivera et al., Biochemistry, 1998, 37, 1485). This modulation is thought to originate from the neutralization of a solvent exposed heme propionate and from dehydration of the complex interface. Although direct evidence demonstrating that neutralization of the charge on the heme propionate contributes to the modulation of the redox potential of cytochrome b5 has been obtained, evidence demonstrating that water exclusion from the complex interface plays a similar role has not been conclusive. Herein we report the preparation of the V45I/V61I double mutant of rat liver outer mitochondrial membrane (OM) cytochrome b5. This mutant has been engineered with the aim of restricting water accessibility to the exposed heme edge of cytochrome b5. The X-ray crystal structure of the V45I/V61I mutant revealed that the side chain of Ile at positions 45 and 61 restricts water accessibility to the interior of the heme cavity and protects a large section of the heme edge from the aqueous environment. Electrochemical studies performed with the V45I/V61I mutant of cytochrome b5, and with a derivative in which the heme propionates have been converted into the corresponding dimethyl ester groups, clearly demonstrate that dehydration of the heme edge contributes to the modulation of the reduction potential of cytochrome b5. In fact, these studies showed that exclusion of water from the complex interface exerts an effect (approximately 40 mV shift) that is comparable, if not larger, than the one originating from neutralization of the charge on the solvent exposed heme propionate (approximately 30 mV shift).
PubMed: 11197480
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.8 Å)
Structure validation

242842

数据于2025-10-08公开中

PDB statisticsPDBj update infoContact PDBjnumon