1CS3
STRUCTURE OF BTB/POZ TRANSCRIPTION REPRESSION DOMAIN FROM PROMELOCYTIC LEUKEMIA ZINC FINGER ONCOPROTEIN
Summary for 1CS3
Entry DOI | 10.2210/pdb1cs3/pdb |
Descriptor | ZINC FINGER PROTEIN PLZF, MAGNESIUM ION, GLYCEROL, ... (4 entities in total) |
Functional Keywords | btb/poz, plzf, transcription repression, oncoprotein, gene regulation, transcription |
Biological source | Homo sapiens (human) |
Cellular location | Nucleus: Q05516 |
Total number of polymer chains | 1 |
Total formula weight | 13440.74 |
Authors | Li, X.,Rauscher III, F.J.,Marmorstein, R. (deposition date: 1999-08-16, release date: 1999-08-27, Last modification date: 2024-02-07) |
Primary citation | Li, X.,Peng, H.,Schultz, D.C.,Lopez-Guisa, J.M.,Rauscher III, F.J.,Marmorstein, R. Structure-function studies of the BTB/POZ transcriptional repression domain from the promyelocytic leukemia zinc finger oncoprotein. Cancer Res., 59:5275-5282, 1999 Cited by PubMed Abstract: The evolutionarily conserved BTB/POZ domain from the promyelocytic leukemia zinc finger (PLZF) oncoprotein mediates transcriptional repression through the recruitment of corepressor proteins containing histone deacetylases in acute promyelocytic leukemia. We have determined the 2.0 A crystal structure of the BTB/POZ domain from PLZF (PLZF-BTB/POZ), and have carried out biochemical analysis of PLZF-BTB/POZ harboring site-directed mutations to probe structure-function relationships. The structure reveals a novel alpha/beta homodimeric fold in which dimer interactions occur along two surfaces of the protein subunits. The conservation of BTB/POZ domain residues at the core of the protomers and at the dimer interface implies an analogous fold and dimerization mode for BTB/POZ domains from otherwise functionally unrelated proteins. Unexpectedly, the BTB/POZ domain forms dimer-dimer interactions in the crystals, suggesting a mode for higher-order protein oligomerization for BTB/POZ-mediated transcriptional repression. Biochemical characterization of PLZF-BTB/POZ harboring mutations in conserved residues involved in protein dimerization reveals that the integrity of the dimer interface is exquisitely sensitive to mutation and that dimer formation is required for wild-type levels of transcriptional repression. Interestingly, similar mutational analysis of residues within a pronounced protein cleft along the dimer interface, which had been implicated previously for interaction with corepressors, has negligible effects on dimerization or transcriptional repression. Together, these studies form a structure-function framework for understanding BTB/POZ-mediated oligomerization and transcriptional repression properties. PubMed: 10537309PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2 Å) |
Structure validation
Download full validation report
