Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

1ORM

NMR FOLD OF THE OUTER MEMBRANE PROTEIN OMPX IN DHPC MICELLES

Summary for 1ORM
Entry DOI10.2210/pdb1orm/pdb
Related1QJ8 1QJ9
DescriptorOuter membrane protein X (1 entity in total)
Functional Keywordsompx, membrane protein, trosy, dhpc, detergents, lipids, micelles
Biological sourceEscherichia coli
Cellular locationCell outer membrane; Multi-pass membrane protein: P0A917
Total number of polymer chains1
Total formula weight16371.77
Authors
Fernandez, C.,Adeishvili, K.,Wuthrich, K. (deposition date: 2003-03-14, release date: 2003-04-22, Last modification date: 2024-05-22)
Primary citationFERNANDEZ, C.,ADEISHVILI, K.,WUTHRICH, K.
TRANSVERSE RELAXATION-OPTIMIZED NMR SPECTROSCOPY WITH THE OUTER MEMBRANE PROTEIN OMPX IN DIHEXANOYL PHOSPHATIDYLCHOLINE MICELLES
Proc.Natl.Acad.Sci.USA, 98:2358-2363, 2001
Cited by
PubMed Abstract: The (2)H,(13)C,(15)N-labeled, 148-residue integral membrane protein OmpX from Escherichia coli was reconstituted with dihexanoyl phosphatidylcholine (DHPC) in mixed micelles of molecular mass of about 60 kDa. Transverse relaxation-optimized spectroscopy (TROSY)-type triple resonance NMR experiments and TROSY-type nuclear Overhauser enhancement spectra were recorded in 2 mM aqueous solutions of these mixed micelles at pH 6.8 and 30 degrees C. Complete sequence-specific NMR assignments for the polypeptide backbone thus have been obtained. The (13)C chemical shifts and the nuclear Overhauser effect data then resulted in the identification of the regular secondary structure elements of OmpX/DHPC in solution and in the collection of an input of conformational constraints for the computation of the global fold of the protein. The same type of polypeptide backbone fold is observed in the presently determined solution structure and the previously reported crystal structure of OmpX determined in the presence of the detergent n-octyltetraoxyethylene. Further structure refinement will have to rely on the additional resonance assignment of partially or fully protonated amino acid side chains, but the present data already demonstrate that relaxation-optimized NMR techniques open novel avenues for studies of structure and function of integral membrane proteins.
PubMed: 11226244
DOI: 10.1073/pnas.051629298
PDB entries with the same primary citation
Experimental method
SOLUTION NMR
Structure validation

235183

PDB entries from 2025-04-23

PDB statisticsPDBj update infoContact PDBjnumon