+
Open data
-
Basic information
| Entry | Database: PDB / ID: 9jvh | |||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Title | Cryo-EM structure of the mmGPR4-Gs receptor in pH6.2 | |||||||||||||||||||||
Components | G-protein coupled receptor 4 | |||||||||||||||||||||
Keywords | MEMBRANE PROTEIN / pH6.2 / mmGPR4 / Gs | |||||||||||||||||||||
| Function / homology | Function and homology informationClass A/1 (Rhodopsin-like receptors) / G alpha (q) signalling events / glomerular mesangial cell development / regulation of vascular permeability / response to acidic pH / cellular response to acidic pH / angiogenesis involved in wound healing / positive regulation of Rho protein signal transduction / regulation of cell adhesion / negative regulation of angiogenesis ...Class A/1 (Rhodopsin-like receptors) / G alpha (q) signalling events / glomerular mesangial cell development / regulation of vascular permeability / response to acidic pH / cellular response to acidic pH / angiogenesis involved in wound healing / positive regulation of Rho protein signal transduction / regulation of cell adhesion / negative regulation of angiogenesis / G protein-coupled receptor activity / adenylate cyclase-activating G protein-coupled receptor signaling pathway / positive regulation of inflammatory response / phospholipase C-activating G protein-coupled receptor signaling pathway / G protein-coupled receptor signaling pathway / plasma membrane Similarity search - Function | |||||||||||||||||||||
| Biological species | ![]() | |||||||||||||||||||||
| Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.76 Å | |||||||||||||||||||||
Authors | Wen, X. / Rong, N.K. / Yang, F. / Sun, J.P. | |||||||||||||||||||||
| Funding support | China, 1items
| |||||||||||||||||||||
Citation | Journal: Cell / Year: 2025Title: Evolutionary study and structural basis of proton sensing by Mus GPR4 and Xenopus GPR4. Authors: Xin Wen / Pan Shang / Haidi Chen / Lulu Guo / Naikang Rong / Xiaoyu Jiang / Xuan Li / Junyan Liu / Gongming Yang / Jiacheng Zhang / Kongkai Zhu / Qingbiao Meng / Xuefei He / Zhihai Wang / ...Authors: Xin Wen / Pan Shang / Haidi Chen / Lulu Guo / Naikang Rong / Xiaoyu Jiang / Xuan Li / Junyan Liu / Gongming Yang / Jiacheng Zhang / Kongkai Zhu / Qingbiao Meng / Xuefei He / Zhihai Wang / Zili Liu / Haoran Cheng / Yilin Zheng / Bifei Zhang / Jiaojiao Pang / Zhaoqian Liu / Peng Xiao / Yuguo Chen / Lunxu Liu / Fengming Luo / Xiao Yu / Fan Yi / Pengju Zhang / Fan Yang / Cheng Deng / Jin-Peng Sun / ![]() Abstract: Animals have evolved pH-sensing membrane receptors, such as G-protein-coupled receptor 4 (GPR4), to monitor pH changes related to their physiology and generate adaptive reactions. However, the ...Animals have evolved pH-sensing membrane receptors, such as G-protein-coupled receptor 4 (GPR4), to monitor pH changes related to their physiology and generate adaptive reactions. However, the evolutionary trajectory and structural mechanism of proton sensing by GPR4 remain unresolved. Here, we observed a positive correlation between the optimal pH of GPR4 activity and the blood pH range across different species. By solving 7-cryoelectron microscopy (cryo-EM) structures of Xenopus tropicalis GPR4 (xtGPR4) and Mus musculus GPR4 (mmGPR4) under varying pH conditions, we identified that protonation of H and H enabled polar network establishment and tighter association between the extracellular loop 2 (ECL2) and 7 transmembrane (7TM) domain, as well as a conserved propagating path, which are common mechanisms underlying protonation-induced GPR4 activation across different species. Moreover, protonation of distinct extracellular H contributed to the more acidic optimal pH range of xtGPR4. Overall, our study revealed common and distinct mechanisms of proton sensing by GPR4, from a structural, functional, and evolutionary perspective. | |||||||||||||||||||||
| History |
|
-
Structure visualization
| Structure viewer | Molecule: Molmil Jmol/JSmol |
|---|
-
Downloads & links
-
Download
| PDBx/mmCIF format | 9jvh.cif.gz | 63.9 KB | Display | PDBx/mmCIF format |
|---|---|---|---|---|
| PDB format | pdb9jvh.ent.gz | 43.4 KB | Display | PDB format |
| PDBx/mmJSON format | 9jvh.json.gz | Tree view | PDBx/mmJSON format | |
| Others | Other downloads |
-Validation report
| Summary document | 9jvh_validation.pdf.gz | 356 KB | Display | wwPDB validaton report |
|---|---|---|---|---|
| Full document | 9jvh_full_validation.pdf.gz | 357.8 KB | Display | |
| Data in XML | 9jvh_validation.xml.gz | 7.1 KB | Display | |
| Data in CIF | 9jvh_validation.cif.gz | 10.7 KB | Display | |
| Arichive directory | https://data.pdbj.org/pub/pdb/validation_reports/jv/9jvh ftp://data.pdbj.org/pub/pdb/validation_reports/jv/9jvh | HTTPS FTP |
-Related structure data
| Related structure data | ![]() 61838MC ![]() 61839MC ![]() 8zd1C ![]() 8zf4C ![]() 8zf6C ![]() 8zf7C ![]() 8zf9C ![]() 8zfaC ![]() 8zfbC ![]() 8zfcC ![]() 8zfdC ![]() 8zfeC ![]() 9jvgC ![]() 9jvmC M: map data used to model this data C: citing same article ( |
|---|---|
| Similar structure data | Similarity search - Function & homology F&H Search |
-
Links
-
Assembly
| Deposited unit | ![]()
|
|---|---|
| 1 |
|
-
Components
| #1: Protein | Mass: 41149.789 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() |
|---|---|
| Has protein modification | Y |
-Experimental details
-Experiment
| Experiment | Method: ELECTRON MICROSCOPY |
|---|---|
| EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
| Component | Name: Cryo-EM structure of the mmGPR4-Gs receptor in pH6.2 / Type: COMPLEX / Entity ID: all / Source: RECOMBINANT |
|---|---|
| Source (natural) | Organism: ![]() |
| Source (recombinant) | Organism: ![]() |
| Buffer solution | pH: 6.2 |
| Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
| Vitrification | Cryogen name: ETHANE |
-
Electron microscopy imaging
| Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
|---|---|
| Microscopy | Model: TFS KRIOS |
| Electron gun | Electron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM |
| Electron lens | Mode: DIFFRACTION / Nominal defocus max: 2000 nm / Nominal defocus min: 1000 nm |
| Image recording | Electron dose: 1.875 e/Å2 / Film or detector model: GATAN K3 (6k x 4k) |
-
Processing
| EM software | Name: PHENIX / Category: model refinement | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CTF correction | Type: NONE | ||||||||||||||||||||||||
| 3D reconstruction | Resolution: 2.76 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 193910 / Symmetry type: POINT | ||||||||||||||||||||||||
| Refinement | Stereochemistry target values: REAL-SPACE (WEIGHTED MAP SUM AT ATOM CENTERS) | ||||||||||||||||||||||||
| Refine LS restraints |
|
Movie
Controller
About Yorodumi






China, 1items
Citation
























PDBj










FIELD EMISSION GUN