+
Open data
-
Basic information
| Entry | ![]() | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Title | Cryo-EM structure of the receptor of xGPR4-Gs complex in pH6.2 | |||||||||
Map data | ||||||||||
Sample |
| |||||||||
Keywords | pH6.2 / xGPR4 / receptor / MEMBRANE PROTEIN/IMMUNE SYSTEM / MEMBRANE PROTEIN | |||||||||
| Function / homology | Function and homology informationcellular response to acidic pH / PKA activation in glucagon signalling / developmental growth / hair follicle placode formation / D1 dopamine receptor binding / intracellular transport / vascular endothelial cell response to laminar fluid shear stress / renal water homeostasis / activation of adenylate cyclase activity / Hedgehog 'off' state ...cellular response to acidic pH / PKA activation in glucagon signalling / developmental growth / hair follicle placode formation / D1 dopamine receptor binding / intracellular transport / vascular endothelial cell response to laminar fluid shear stress / renal water homeostasis / activation of adenylate cyclase activity / Hedgehog 'off' state / adenylate cyclase-activating adrenergic receptor signaling pathway / cellular response to glucagon stimulus / regulation of insulin secretion / adenylate cyclase activator activity / trans-Golgi network membrane / negative regulation of inflammatory response to antigenic stimulus / G protein-coupled receptor activity / bone development / platelet aggregation / G-protein beta/gamma-subunit complex binding / cognition / Olfactory Signaling Pathway / Activation of the phototransduction cascade / adenylate cyclase-activating G protein-coupled receptor signaling pathway / G beta:gamma signalling through PLC beta / Presynaptic function of Kainate receptors / Thromboxane signalling through TP receptor / G protein-coupled acetylcholine receptor signaling pathway / Activation of G protein gated Potassium channels / Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits / G-protein activation / Prostacyclin signalling through prostacyclin receptor / G beta:gamma signalling through CDC42 / Glucagon signaling in metabolic regulation / G beta:gamma signalling through BTK / Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) / ADP signalling through P2Y purinoceptor 12 / photoreceptor disc membrane / Sensory perception of sweet, bitter, and umami (glutamate) taste / Glucagon-type ligand receptors / Adrenaline,noradrenaline inhibits insulin secretion / Vasopressin regulates renal water homeostasis via Aquaporins / Glucagon-like Peptide-1 (GLP1) regulates insulin secretion / G alpha (z) signalling events / sensory perception of smell / cellular response to catecholamine stimulus / ADP signalling through P2Y purinoceptor 1 / ADORA2B mediated anti-inflammatory cytokines production / G beta:gamma signalling through PI3Kgamma / adenylate cyclase-activating dopamine receptor signaling pathway / Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding / GPER1 signaling / Inactivation, recovery and regulation of the phototransduction cascade / cellular response to prostaglandin E stimulus / G-protein beta-subunit binding / heterotrimeric G-protein complex / G alpha (12/13) signalling events / sensory perception of taste / extracellular vesicle / signaling receptor complex adaptor activity / Thrombin signalling through proteinase activated receptors (PARs) / positive regulation of cold-induced thermogenesis / retina development in camera-type eye / G protein activity / GTPase binding / Ca2+ pathway / fibroblast proliferation / High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR in endothelial cells / G alpha (i) signalling events / G alpha (s) signalling events / phospholipase C-activating G protein-coupled receptor signaling pathway / G alpha (q) signalling events / Hydrolases; Acting on acid anhydrides; Acting on GTP to facilitate cellular and subcellular movement / Ras protein signal transduction / Extra-nuclear estrogen signaling / cell population proliferation / G protein-coupled receptor signaling pathway / lysosomal membrane / GTPase activity / synapse / GTP binding / protein-containing complex binding / signal transduction / extracellular exosome / metal ion binding / membrane / plasma membrane / cytoplasm / cytosol Similarity search - Function | |||||||||
| Biological species | ||||||||||
| Method | single particle reconstruction / cryo EM / Resolution: 3.05 Å | |||||||||
Authors | Rong NK / Wen X / Yang F / Sun JP | |||||||||
| Funding support | China, 1 items
| |||||||||
Citation | Journal: Cell / Year: 2025Title: Evolutionary study and structural basis of proton sensing by Mus GPR4 and Xenopus GPR4. Authors: Xin Wen / Pan Shang / Haidi Chen / Lulu Guo / Naikang Rong / Xiaoyu Jiang / Xuan Li / Junyan Liu / Gongming Yang / Jiacheng Zhang / Kongkai Zhu / Qingbiao Meng / Xuefei He / Zhihai Wang / ...Authors: Xin Wen / Pan Shang / Haidi Chen / Lulu Guo / Naikang Rong / Xiaoyu Jiang / Xuan Li / Junyan Liu / Gongming Yang / Jiacheng Zhang / Kongkai Zhu / Qingbiao Meng / Xuefei He / Zhihai Wang / Zili Liu / Haoran Cheng / Yilin Zheng / Bifei Zhang / Jiaojiao Pang / Zhaoqian Liu / Peng Xiao / Yuguo Chen / Lunxu Liu / Fengming Luo / Xiao Yu / Fan Yi / Pengju Zhang / Fan Yang / Cheng Deng / Jin-Peng Sun / ![]() Abstract: Animals have evolved pH-sensing membrane receptors, such as G-protein-coupled receptor 4 (GPR4), to monitor pH changes related to their physiology and generate adaptive reactions. However, the ...Animals have evolved pH-sensing membrane receptors, such as G-protein-coupled receptor 4 (GPR4), to monitor pH changes related to their physiology and generate adaptive reactions. However, the evolutionary trajectory and structural mechanism of proton sensing by GPR4 remain unresolved. Here, we observed a positive correlation between the optimal pH of GPR4 activity and the blood pH range across different species. By solving 7-cryoelectron microscopy (cryo-EM) structures of Xenopus tropicalis GPR4 (xtGPR4) and Mus musculus GPR4 (mmGPR4) under varying pH conditions, we identified that protonation of H and H enabled polar network establishment and tighter association between the extracellular loop 2 (ECL2) and 7 transmembrane (7TM) domain, as well as a conserved propagating path, which are common mechanisms underlying protonation-induced GPR4 activation across different species. Moreover, protonation of distinct extracellular H contributed to the more acidic optimal pH range of xtGPR4. Overall, our study revealed common and distinct mechanisms of proton sensing by GPR4, from a structural, functional, and evolutionary perspective. | |||||||||
| History |
|
-
Structure visualization
| Supplemental images |
|---|
-
Downloads & links
-EMDB archive
| Map data | emd_60050.map.gz | 95.9 MB | EMDB map data format | |
|---|---|---|---|---|
| Header (meta data) | emd-60050-v30.xml emd-60050.xml | 17.6 KB 17.6 KB | Display Display | EMDB header |
| Images | emd_60050.png | 69.5 KB | ||
| Masks | emd_60050_msk_1.map | 103 MB | Mask map | |
| Filedesc metadata | emd-60050.cif.gz | 5.8 KB | ||
| Others | emd_60050_half_map_1.map.gz emd_60050_half_map_2.map.gz | 95.6 MB 95.6 MB | ||
| Archive directory | http://ftp.pdbj.org/pub/emdb/structures/EMD-60050 ftp://ftp.pdbj.org/pub/emdb/structures/EMD-60050 | HTTPS FTP |
-Validation report
| Summary document | emd_60050_validation.pdf.gz | 590.6 KB | Display | EMDB validaton report |
|---|---|---|---|---|
| Full document | emd_60050_full_validation.pdf.gz | 590.1 KB | Display | |
| Data in XML | emd_60050_validation.xml.gz | 13 KB | Display | |
| Data in CIF | emd_60050_validation.cif.gz | 15.5 KB | Display | |
| Arichive directory | https://ftp.pdbj.org/pub/emdb/validation_reports/EMD-60050 ftp://ftp.pdbj.org/pub/emdb/validation_reports/EMD-60050 | HTTPS FTP |
-Related structure data
| Related structure data | ![]() 8zd1MC ![]() 8zf4MC ![]() 8zf6C ![]() 8zf7C ![]() 8zf9C ![]() 8zfaC ![]() 8zfbC ![]() 8zfcC ![]() 8zfdC ![]() 8zfeC ![]() 9jvgC ![]() 9jvhC ![]() 9jvmC C: citing same article ( M: atomic model generated by this map |
|---|---|
| Similar structure data | Similarity search - Function & homology F&H Search |
-
Links
| EMDB pages | EMDB (EBI/PDBe) / EMDataResource |
|---|---|
| Related items in Molecule of the Month |
-
Map
| File | Download / File: emd_60050.map.gz / Format: CCP4 / Size: 103 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES) | ||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
| Voxel size | X=Y=Z: 0.93 Å | ||||||||||||||||||||||||||||||||||||
| Density |
| ||||||||||||||||||||||||||||||||||||
| Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
| Details | EMDB XML:
|
-Supplemental data
-Mask #1
| File | emd_60050_msk_1.map | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Projections & Slices |
| ||||||||||||
| Density Histograms |
-Half map: #1
| File | emd_60050_half_map_1.map | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Projections & Slices |
| ||||||||||||
| Density Histograms |
-Half map: #2
| File | emd_60050_half_map_2.map | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Projections & Slices |
| ||||||||||||
| Density Histograms |
-
Sample components
-Entire : Cryo-EM structure of the receptor of xGPR4-Gs complex in pH6.2
| Entire | Name: Cryo-EM structure of the receptor of xGPR4-Gs complex in pH6.2 |
|---|---|
| Components |
|
-Supramolecule #1: Cryo-EM structure of the receptor of xGPR4-Gs complex in pH6.2
| Supramolecule | Name: Cryo-EM structure of the receptor of xGPR4-Gs complex in pH6.2 type: complex / ID: 1 / Parent: 0 / Macromolecule list: all |
|---|---|
| Source (natural) | Organism: |
-Macromolecule #1: G-protein coupled receptor 4
| Macromolecule | Name: G-protein coupled receptor 4 / type: protein_or_peptide / ID: 1 / Number of copies: 1 / Enantiomer: LEVO |
|---|---|
| Source (natural) | Organism: |
| Molecular weight | Theoretical: 38.083359 KDa |
| Recombinant expression | Organism: ![]() |
| Sequence | String: MSNFTPDACN VDSGLDSVLP PSLYALVFTL GLPANLLALW AAWLQVRKGR ELGVYLLNLS LSDLLLICAL PPWTDYYLRR DVWGYGPGA CRLFGFVFYT NLYVGAAFLS CVSADRYLAV AHPLRFPGAR PIRSAAAVSA LIWMLELAAN APPLLGEAIH R DRYNHTFC ...String: MSNFTPDACN VDSGLDSVLP PSLYALVFTL GLPANLLALW AAWLQVRKGR ELGVYLLNLS LSDLLLICAL PPWTDYYLRR DVWGYGPGA CRLFGFVFYT NLYVGAAFLS CVSADRYLAV AHPLRFPGAR PIRSAAAVSA LIWMLELAAN APPLLGEAIH R DRYNHTFC YESYPLSGRG AALANVGRVL AGFLLPWGVM MLCYAGLLRA LRGSASCEQR ERRRVRRLAL GLPCVALLCY GP YHALLLL RSLVFLVGGG SVDAGGGCAL EERLFPAYHA SLALATLNCL ADPALYCLAC PGARGEVAKV VGGVVAWAMG KER RAWGER GGNGRGCGEG EEVGMVELRG NGREFVV UniProtKB: G-protein coupled receptor 4 |
-Experimental details
-Structure determination
| Method | cryo EM |
|---|---|
Processing | single particle reconstruction |
| Aggregation state | particle |
-
Sample preparation
| Buffer | pH: 6.2 |
|---|---|
| Vitrification | Cryogen name: ETHANE |
-
Electron microscopy
| Microscope | TFS KRIOS |
|---|---|
| Image recording | Film or detector model: GATAN K3 (6k x 4k) / Average electron dose: 1.875 e/Å2 |
| Electron beam | Acceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN |
| Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: DIFFRACTION / Nominal defocus max: 2.0 µm / Nominal defocus min: 1.0 µm |
| Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
Movie
Controller
About Yorodumi




Keywords
Authors
China, 1 items
Citation














































Z (Sec.)
Y (Row.)
X (Col.)













































Processing
FIELD EMISSION GUN
