[English] 日本語

- PDB-8rg0: Structure of human eIF3 core from closed 48S translation initiati... -
+
Open data
-
Basic information
Entry | Database: PDB / ID: 8rg0 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Structure of human eIF3 core from closed 48S translation initiation complex | |||||||||
![]() |
| |||||||||
![]() | RIBOSOME / TRANSLATION / initiation / 48S / eIF / human / eukaryotic / factor / codon / scanning / open / reading | |||||||||
Function / homology | ![]() positive regulation of mRNA binding / viral translational termination-reinitiation / eukaryotic translation initiation factor 3 complex, eIF3e / cap-dependent translational initiation / eukaryotic translation initiation factor 3 complex, eIF3m / IRES-dependent viral translational initiation / translation reinitiation / eukaryotic translation initiation factor 3 complex / formation of cytoplasmic translation initiation complex / cytoplasmic translational initiation ...positive regulation of mRNA binding / viral translational termination-reinitiation / eukaryotic translation initiation factor 3 complex, eIF3e / cap-dependent translational initiation / eukaryotic translation initiation factor 3 complex, eIF3m / IRES-dependent viral translational initiation / translation reinitiation / eukaryotic translation initiation factor 3 complex / formation of cytoplasmic translation initiation complex / cytoplasmic translational initiation / multi-eIF complex / eukaryotic 43S preinitiation complex / mRNA cap binding / eukaryotic 48S preinitiation complex / translation at postsynapse / negative regulation of RNA splicing / metal-dependent deubiquitinase activity / regulation of translational initiation / nuclear-transcribed mRNA catabolic process, nonsense-mediated decay / translation at presynapse / Formation of the ternary complex, and subsequently, the 43S complex / erythrocyte homeostasis / rRNA modification in the nucleus and cytosol / cytoplasmic side of rough endoplasmic reticulum membrane / laminin receptor activity / Ribosomal scanning and start codon recognition / Translation initiation complex formation / SARS-CoV-1 modulates host translation machinery / Peptide chain elongation / Selenocysteine synthesis / Formation of a pool of free 40S subunits / Eukaryotic Translation Termination / Response of EIF2AK4 (GCN2) to amino acid deficiency / SRP-dependent cotranslational protein targeting to membrane / Viral mRNA Translation / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / GTP hydrolysis and joining of the 60S ribosomal subunit / L13a-mediated translational silencing of Ceruloplasmin expression / Major pathway of rRNA processing in the nucleolus and cytosol / Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) / laminin binding / translation regulator activity / Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal / translation initiation factor binding / negative regulation of translational initiation / negative regulation of proteasomal ubiquitin-dependent protein catabolic process / cytosolic ribosome / Mitotic Prometaphase / antiviral innate immune response / EML4 and NUDC in mitotic spindle formation / translation initiation factor activity / Resolution of Sister Chromatid Cohesion / erythrocyte differentiation / positive regulation of translation / maturation of SSU-rRNA / translational initiation / small-subunit processome / RHO GTPases Activate Formins / PML body / mRNA 5'-UTR binding / Regulation of expression of SLITs and ROBOs / fibrillar center / metallopeptidase activity / rRNA processing / Separation of Sister Chromatids / ribosome biogenesis / presynapse / ribosome binding / virus receptor activity / ribosomal small subunit biogenesis / ribosomal small subunit assembly / small ribosomal subunit / cytosolic small ribosomal subunit / small ribosomal subunit rRNA binding / SARS-CoV-2 modulates host translation machinery / ubiquitinyl hydrolase 1 / cysteine-type deubiquitinase activity / cytoplasmic translation / cell differentiation / postsynaptic density / ribosome / structural constituent of ribosome / cadherin binding / translation / ribonucleoprotein complex / focal adhesion / mRNA binding / synapse / negative regulation of apoptotic process / chromatin / nucleolus / structural molecule activity / negative regulation of transcription by RNA polymerase II / endoplasmic reticulum / proteolysis / DNA binding / RNA binding / extracellular exosome / zinc ion binding / nucleoplasm Similarity search - Function | |||||||||
Biological species | ![]() | |||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.4 Å | |||||||||
![]() | Petrychenko, V. / Yi, S.-H. / Liedtke, D. / Peng, B.Z. / Rodnina, M.V. / Fischer, N. | |||||||||
Funding support | ![]()
| |||||||||
![]() | ![]() Title: Structural basis for translational control by the human 48S initiation complex. Authors: Valentyn Petrychenko / Sung-Hui Yi / David Liedtke / Bee-Zen Peng / Marina V Rodnina / Niels Fischer / ![]() Abstract: The selection of an open reading frame (ORF) for translation of eukaryotic mRNA relies on remodeling of the scanning 48S initiation complex into an elongation-ready 80S ribosome. Using cryo-electron ...The selection of an open reading frame (ORF) for translation of eukaryotic mRNA relies on remodeling of the scanning 48S initiation complex into an elongation-ready 80S ribosome. Using cryo-electron microscopy, we visualize the key commitment steps orchestrating 48S remodeling in humans. The mRNA Kozak sequence facilitates mRNA scanning in the 48S open state and stabilizes the 48S closed state by organizing the contacts of eukaryotic initiation factors (eIFs) and ribosomal proteins and by reconfiguring mRNA structure. GTPase-triggered large-scale fluctuations of 48S-bound eIF2 facilitate eIF5B recruitment, transfer of initiator tRNA from eIF2 to eIF5B and the release of eIF5 and eIF2. The 48S-bound multisubunit eIF3 complex controls ribosomal subunit joining by coupling eIF exchange to gradual displacement of the eIF3c N-terminal domain from the intersubunit interface. These findings reveal the structural mechanism of ORF selection in human cells and explain how eIF3 could function in the context of the 80S ribosome. | |||||||||
History |
|
-
Structure visualization
Structure viewer | Molecule: ![]() ![]() |
---|
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 832.4 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 593.6 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Arichive directory | ![]() ![]() | HTTPS FTP |
---|
-Related structure data
Related structure data | ![]() 19128MC ![]() 8pj1C ![]() 8pj2C ![]() 8pj3C ![]() 8pj4C ![]() 8pj5C ![]() 8pj6C C: citing same article ( M: map data used to model this data |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
-Eukaryotic translation initiation factor 3 subunit ... , 9 types, 9 molecules 34568uvxy
#1: Protein | Mass: 25083.619 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
---|---|
#2: Protein | Mass: 37593.645 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
#3: Protein | Mass: 66803.734 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
#4: Protein | Mass: 42555.832 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
#6: Protein | Mass: 39979.277 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
#16: Protein | Mass: 166903.781 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
#17: Protein | Mass: 52281.633 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
#18: Protein | Mass: 64060.758 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
#19: Protein | Mass: 105503.945 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
-RNA chain , 2 types, 2 molecules 7A
#5: RNA chain | Mass: 82412.445 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
---|---|
#7: RNA chain | Mass: 603245.500 Da / Num. of mol.: 1 / Source method: isolated from a natural source Details: Only small part of the 18S rRNA is provided with sequence truncated to visualized only parts. Source: (natural) ![]() |
-40S ribosomal protein ... , 8 types, 8 molecules HIMNOPQn
#8: Protein | Mass: 9480.186 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
---|---|
#9: Protein | Mass: 17259.389 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
#10: Protein | Mass: 15578.156 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
#11: Protein | Mass: 32883.938 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
#12: Protein | Mass: 30002.061 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
#13: Protein | Mass: 16302.772 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
#14: Protein | Mass: 13047.532 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
#15: Protein | Mass: 7855.052 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
-Non-polymers , 2 types, 2 molecules 


#20: Chemical | ChemComp-MG / |
---|---|
#21: Chemical | ChemComp-ZN / |
-Details
Has ligand of interest | N |
---|---|
Has protein modification | Y |
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component |
| ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source (natural) |
| ||||||||||||||||||||||||||||||||||||||||
Source (recombinant) | Organism: ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||
Buffer solution | pH: 7.5 | ||||||||||||||||||||||||||||||||||||||||
Buffer component |
| ||||||||||||||||||||||||||||||||||||||||
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES | ||||||||||||||||||||||||||||||||||||||||
Vitrification | Instrument: HOMEMADE PLUNGER / Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 277 K / Details: Manual blotting & plunge-freezing |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD / Nominal magnification: 59000 X / Nominal defocus max: 2500 nm / Nominal defocus min: 200 nm / Cs: 0.01 mm |
Specimen holder | Cryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER |
Image recording | Average exposure time: 1.5 sec. / Electron dose: 45 e/Å2 / Detector mode: INTEGRATING / Film or detector model: FEI FALCON III (4k x 4k) |
EM imaging optics | Spherical aberration corrector: Electron-optical aberrations were corrected using a CETCOR Cs-corrector (CEOS, Heidelberg) aligned with the CETCORPLUS 4.6.9 software package (CEOS, Heidelberg). |
-
Processing
EM software |
| ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||
Symmetry | Point symmetry: C1 (asymmetric) | ||||||||||||
3D reconstruction | Resolution: 3.4 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 356632 / Symmetry type: POINT | ||||||||||||
Atomic model building | Space: REAL |