[English] 日本語

- PDB-7nrd: Structure of the yeast Gcn1 bound to a colliding stalled 80S ribo... -
+
Open data
-
Basic information
Entry | Database: PDB / ID: 7nrd | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Structure of the yeast Gcn1 bound to a colliding stalled 80S ribosome with MBF1, A/P-tRNA and P/E-tRNA | |||||||||
![]() |
| |||||||||
![]() | RIBOSOME / Disome / GCN1 / Translation / GAAC / MBF1 | |||||||||
Function / homology | ![]() GCN2-mediated signaling / maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, LSU-rRNA,5S) / Negative regulators of DDX58/IFIH1 signaling / regulation of amino acid metabolic process / negative regulation of glucose mediated signaling pathway / positive regulation of translational fidelity / RMTs methylate histone arginines / Protein methylation / mTORC1-mediated signalling / Protein hydroxylation ...GCN2-mediated signaling / maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, LSU-rRNA,5S) / Negative regulators of DDX58/IFIH1 signaling / regulation of amino acid metabolic process / negative regulation of glucose mediated signaling pathway / positive regulation of translational fidelity / RMTs methylate histone arginines / Protein methylation / mTORC1-mediated signalling / Protein hydroxylation / ribosome-associated ubiquitin-dependent protein catabolic process / GDP-dissociation inhibitor activity / positive regulation of nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay / pre-mRNA 5'-splice site binding / Formation of the ternary complex, and subsequently, the 43S complex / Translation initiation complex formation / Ribosomal scanning and start codon recognition / preribosome, small subunit precursor / nonfunctional rRNA decay / response to cycloheximide / cleavage in ITS2 between 5.8S rRNA and LSU-rRNA of tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / Major pathway of rRNA processing in the nucleolus and cytosol / mRNA destabilization / SRP-dependent cotranslational protein targeting to membrane / GTP hydrolysis and joining of the 60S ribosomal subunit / negative regulation of translational frameshifting / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) / negative regulation of mRNA splicing, via spliceosome / Formation of a pool of free 40S subunits / preribosome, large subunit precursor / L13a-mediated translational silencing of Ceruloplasmin expression / endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / translational elongation / ribosomal large subunit export from nucleus / G-protein alpha-subunit binding / 90S preribosome / positive regulation of protein kinase activity / Ub-specific processing proteases / ribosomal subunit export from nucleus / regulation of translational fidelity / protein-RNA complex assembly / endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / translational termination / maturation of LSU-rRNA / ribosomal small subunit export from nucleus / translation regulator activity / DNA-(apurinic or apyrimidinic site) endonuclease activity / rescue of stalled ribosome / cellular response to amino acid starvation / ribosome assembly / maturation of LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / ribosomal large subunit biogenesis / protein kinase C binding / maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / maturation of SSU-rRNA / translational initiation / small-subunit processome / macroautophagy / maintenance of translational fidelity / modification-dependent protein catabolic process / protein tag activity / cytoplasmic stress granule / rRNA processing / ribosome biogenesis / ribosome binding / ribosomal small subunit biogenesis / ribosomal small subunit assembly / small ribosomal subunit / 5S rRNA binding / ribosomal large subunit assembly / cytosolic small ribosomal subunit / large ribosomal subunit rRNA binding / small ribosomal subunit rRNA binding / cytosolic large ribosomal subunit / cytoplasmic translation / negative regulation of translation / rRNA binding / protein ubiquitination / ribosome / structural constituent of ribosome / G protein-coupled receptor signaling pathway / translation / negative regulation of gene expression / response to antibiotic / mRNA binding / ubiquitin protein ligase binding / nucleolus / mitochondrion / DNA binding / RNA binding / zinc ion binding / nucleoplasm / nucleus / cytosol / cytoplasm Similarity search - Function | |||||||||
Biological species | ![]() ![]() ![]() ![]() | |||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 4.36 Å | |||||||||
![]() | Pochopien, A.A. / Beckert, B. / Wilson, D.N. | |||||||||
Funding support | ![]()
| |||||||||
![]() | ![]() Title: Structure of Gcn1 bound to stalled and colliding 80S ribosomes. Authors: Agnieszka A Pochopien / Bertrand Beckert / Sergo Kasvandik / Otto Berninghausen / Roland Beckmann / Tanel Tenson / Daniel N Wilson / ![]() ![]() Abstract: The Gcn pathway is conserved in all eukaryotes, including mammals such as humans, where it is a crucial part of the integrated stress response (ISR). Gcn1 serves as an essential effector protein for ...The Gcn pathway is conserved in all eukaryotes, including mammals such as humans, where it is a crucial part of the integrated stress response (ISR). Gcn1 serves as an essential effector protein for the kinase Gcn2, which in turn is activated by stalled ribosomes, leading to phosphorylation of eIF2 and a subsequent global repression of translation. The fine-tuning of this adaptive response is performed by the Rbg2/Gir2 complex, a negative regulator of Gcn2. Despite the wealth of available biochemical data, information on structures of Gcn proteins on the ribosome has remained elusive. Here we present a cryo-electron microscopy structure of the yeast Gcn1 protein in complex with stalled and colliding 80S ribosomes. Gcn1 interacts with both 80S ribosomes within the disome, such that the Gcn1 HEAT repeats span from the P-stalk region on the colliding ribosome to the P-stalk and the A-site region of the lead ribosome. The lead ribosome is stalled in a nonrotated state with peptidyl-tRNA in the A-site, uncharged tRNA in the P-site, eIF5A in the E-site, and Rbg2/Gir2 in the A-site factor binding region. By contrast, the colliding ribosome adopts a rotated state with peptidyl-tRNA in a hybrid A/P-site, uncharged-tRNA in the P/E-site, and Mbf1 bound adjacent to the mRNA entry channel on the 40S subunit. Collectively, our findings reveal the interaction mode of the Gcn2-activating protein Gcn1 with colliding ribosomes and provide insight into the regulation of Gcn2 activation. The binding of Gcn1 to a disome has important implications not only for the Gcn2-activated ISR, but also for the general ribosome-associated quality control pathways. | |||||||||
History |
|
-
Structure visualization
Movie |
![]() |
---|---|
Structure viewer | Molecule: ![]() ![]() |
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 4.4 MB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | Display | ![]() | |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Arichive directory | ![]() ![]() | HTTPS FTP |
---|
-Related structure data
Related structure data | ![]() 12535MC ![]() 7nrcC M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
-RNA chain , 7 types, 7 molecules S2S3SnSmLALBLC
#1: RNA chain | Mass: 579761.938 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
---|---|
#36: RNA chain | Mass: 9885.666 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
#37: RNA chain | Mass: 24222.500 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
#38: RNA chain | Mass: 24802.785 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
#39: RNA chain | Mass: 1096842.375 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
#40: RNA chain | Mass: 38951.105 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
#41: RNA chain | Mass: 50682.922 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
+40S ribosomal protein ... , 31 types, 31 molecules SASBSCSDSESFSGSHSISJSKSLSMSPSQSRSSSTSUSVSWSXSYSZSaSbScSdSeSfSg
-Protein , 4 types, 4 molecules SNSOShLo
#15: Protein | Mass: 8329.946 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
---|---|
#16: Protein | Mass: 34151.426 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
#35: Protein | Mass: 13247.083 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
#79: Protein | Mass: 6032.321 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
+60S ribosomal protein ... , 40 types, 40 molecules LDLELFLGLHLILJLKLLLMLNLOLPLQLRLSLTLULVLWLXLYLZLaLbLcLdLeLfLg...
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component | Name: Structure of the yeast Gcn1-bound coilliding stalled 80S ribosome with MBF1, Gir2, A/P-tRNA and P/E-tRNA Type: RIBOSOME / Entity ID: all / Source: NATURAL |
---|---|
Molecular weight | Experimental value: YES |
Source (natural) | Organism: ![]() ![]() |
Buffer solution | pH: 7.5 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Specimen support | Grid material: COPPER / Grid mesh size: 300 divisions/in. / Grid type: Quantifoil R3/3 |
Vitrification | Cryogen name: ETHANE-PROPANE |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD |
Image recording | Electron dose: 2.5 e/Å2 / Film or detector model: FEI FALCON II (4k x 4k) |
-
Processing
EM software |
| ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||
Symmetry | Point symmetry: C1 (asymmetric) | ||||||||||||
3D reconstruction | Resolution: 4.36 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 30016 / Symmetry type: POINT | ||||||||||||
Atomic model building | Protocol: RIGID BODY FIT / Space: REAL |