[English] 日本語
Yorodumi
- PDB-7lc9: Cryo-EM structure of the N-terminal alpha-synuclein truncation 41-140 -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7lc9
TitleCryo-EM structure of the N-terminal alpha-synuclein truncation 41-140
ComponentsAlpha-synuclein
KeywordsPROTEIN FIBRIL / N-terminal alpha-synuclein truncation
Function / homology
Function and homology information


negative regulation of mitochondrial electron transport, NADH to ubiquinone / : / neutral lipid metabolic process / regulation of acyl-CoA biosynthetic process / negative regulation of dopamine uptake involved in synaptic transmission / negative regulation of norepinephrine uptake / positive regulation of SNARE complex assembly / positive regulation of hydrogen peroxide catabolic process / supramolecular fiber / mitochondrial membrane organization ...negative regulation of mitochondrial electron transport, NADH to ubiquinone / : / neutral lipid metabolic process / regulation of acyl-CoA biosynthetic process / negative regulation of dopamine uptake involved in synaptic transmission / negative regulation of norepinephrine uptake / positive regulation of SNARE complex assembly / positive regulation of hydrogen peroxide catabolic process / supramolecular fiber / mitochondrial membrane organization / negative regulation of chaperone-mediated autophagy / regulation of synaptic vesicle recycling / regulation of reactive oxygen species biosynthetic process / negative regulation of platelet-derived growth factor receptor signaling pathway / positive regulation of protein localization to cell periphery / negative regulation of exocytosis / regulation of glutamate secretion / response to iron(II) ion / SNARE complex assembly / positive regulation of neurotransmitter secretion / dopamine biosynthetic process / regulation of norepinephrine uptake / transporter regulator activity / regulation of locomotion / synaptic vesicle priming / mitochondrial ATP synthesis coupled electron transport / regulation of macrophage activation / positive regulation of inositol phosphate biosynthetic process / negative regulation of microtubule polymerization / synaptic vesicle transport / positive regulation of receptor recycling / dopamine uptake involved in synaptic transmission / protein kinase inhibitor activity / dynein complex binding / regulation of dopamine secretion / negative regulation of thrombin-activated receptor signaling pathway / cuprous ion binding / positive regulation of endocytosis / positive regulation of exocytosis / response to magnesium ion / synaptic vesicle exocytosis / enzyme inhibitor activity / kinesin binding / synaptic vesicle endocytosis / regulation of presynapse assembly / response to type II interferon / cysteine-type endopeptidase inhibitor activity / negative regulation of serotonin uptake / alpha-tubulin binding / supramolecular fiber organization / inclusion body / phospholipid metabolic process / cellular response to copper ion / axon terminus / cellular response to epinephrine stimulus / Hsp70 protein binding / response to interleukin-1 / regulation of microtubule cytoskeleton organization / SNARE binding / positive regulation of release of sequestered calcium ion into cytosol / adult locomotory behavior / negative regulation of protein kinase activity / excitatory postsynaptic potential / fatty acid metabolic process / phosphoprotein binding / protein tetramerization / microglial cell activation / regulation of long-term neuronal synaptic plasticity / synapse organization / ferrous iron binding / protein destabilization / PKR-mediated signaling / phospholipid binding / receptor internalization / tau protein binding / long-term synaptic potentiation / synaptic vesicle membrane / positive regulation of inflammatory response / actin cytoskeleton / actin binding / growth cone / cell cortex / cellular response to oxidative stress / neuron apoptotic process / chemical synaptic transmission / molecular adaptor activity / negative regulation of neuron apoptotic process / response to lipopolysaccharide / histone binding / amyloid fibril formation / lysosome / oxidoreductase activity / postsynapse / transcription cis-regulatory region binding / positive regulation of apoptotic process / Amyloid fiber formation / copper ion binding / response to xenobiotic stimulus / axon / neuronal cell body
Similarity search - Function
Synuclein / Alpha-synuclein / Synuclein
Similarity search - Domain/homology
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / helical reconstruction / cryo EM / Resolution: 3.2 Å
AuthorsXiaodan, N. / Ryan, P.M. / Jiansen, J. / Jennifer, C.L.
Funding support United States, 1items
OrganizationGrant numberCountry
National Institutes of Health/National Heart, Lung, and Blood Institute (NIH/NHLBI) United States
CitationJournal: Proc Natl Acad Sci U S A / Year: 2021
Title: The N terminus of α-synuclein dictates fibril formation.
Authors: Ryan P McGlinchey / Xiaodan Ni / Jared A Shadish / Jiansen Jiang / Jennifer C Lee /
Abstract: The generation of α-synuclein (α-syn) truncations from incomplete proteolysis plays a significant role in the pathogenesis of Parkinson's disease. It is well established that C-terminal truncations ...The generation of α-synuclein (α-syn) truncations from incomplete proteolysis plays a significant role in the pathogenesis of Parkinson's disease. It is well established that C-terminal truncations exhibit accelerated aggregation and serve as potent seeds in fibril propagation. In contrast, mechanistic understanding of N-terminal truncations remains ill defined. Previously, we found that disease-related C-terminal truncations resulted in increased fibrillar twist, accompanied by modest conformational changes in a more compact core, suggesting that the N-terminal region could be dictating fibril structure. Here, we examined three N-terminal truncations, in which deletions of 13-, 35-, and 40-residues in the N terminus modulated both aggregation kinetics and fibril morphologies. Cross-seeding experiments showed that out of the three variants, only ΔN13-α-syn (14‒140) fibrils were capable of accelerating full-length fibril formation, albeit slower than self-seeding. Interestingly, the reversed cross-seeding reactions with full-length seeds efficiently promoted all but ΔN40-α-syn (41-140). This behavior can be explained by the unique fibril structure that is adopted by 41-140 with two asymmetric protofilaments, which was determined by cryogenic electron microscopy. One protofilament resembles the previously characterized bent β-arch kernel, comprised of residues E46‒K96, whereas in the other protofilament, fewer residues (E61‒D98) are found, adopting an extended β-hairpin conformation that does not resemble other reported structures. An interfilament interface exists between residues K60‒F94 and Q62‒I88 with an intermolecular salt bridge between K80 and E83. Together, these results demonstrate a vital role for the N-terminal residues in α-syn fibril formation and structure, offering insights into the interplay of α-syn and its truncations.
History
DepositionJan 10, 2021Deposition site: RCSB / Processing site: RCSB
Revision 1.0Sep 15, 2021Provider: repository / Type: Initial release
Revision 1.0Sep 15, 2021Data content type: EM metadata / Data content type: EM metadata / Provider: repository / Type: Initial release
Revision 1.0Sep 15, 2021Data content type: Image / Data content type: Image / Provider: repository / Type: Initial release
Revision 1.0Sep 15, 2021Data content type: Primary map / Data content type: Primary map / Provider: repository / Type: Initial release
Revision 1.0Sep 15, 2021Data content type: Image / Data content type: Image / Provider: repository / Type: Initial release
Revision 1.0Sep 15, 2021Data content type: Primary map / Data content type: Primary map / Provider: repository / Type: Initial release
Revision 1.1May 29, 2024Group: Data collection / Category: chem_comp_atom / chem_comp_bond
Revision 1.2Jun 4, 2025Group: Data collection / Structure summary / Category: em_admin / em_software / pdbx_entry_details / Item: _em_admin.last_update / _em_software.name
Revision 1.1Jun 4, 2025Data content type: EM metadata / Data content type: EM metadata / EM metadata / Group: Data processing / Experimental summary / Data content type: EM metadata / EM metadata / Category: em_admin / em_software / Data content type: EM metadata / EM metadata / Item: _em_admin.last_update / _em_software.name

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-23270
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
F: Alpha-synuclein
A: Alpha-synuclein
H: Alpha-synuclein
B: Alpha-synuclein
I: Alpha-synuclein
C: Alpha-synuclein
J: Alpha-synuclein
D: Alpha-synuclein
K: Alpha-synuclein
E: Alpha-synuclein
L: Alpha-synuclein
G: Alpha-synuclein


Theoretical massNumber of molelcules
Total (without water)124,15512
Polymers124,15512
Non-polymers00
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: microscopy
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein
Alpha-synuclein / Non-A beta component of AD amyloid / Non-A4 component of amyloid precursor / NACP


Mass: 10346.242 Da / Num. of mol.: 12
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: SNCA, NACP, PARK1 / Production host: Escherichia coli (E. coli) / References: UniProt: P37840
Has protein modificationN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: FILAMENT / 3D reconstruction method: helical reconstruction

-
Sample preparation

ComponentName: N-terminal alpha-synuclein truncation 41-140 / Type: COMPLEX / Entity ID: all / Source: RECOMBINANT
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Escherichia coli (E. coli)
Buffer solutionpH: 7.4
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD
Image recordingElectron dose: 55 e/Å2 / Film or detector model: GATAN K2 SUMMIT (4k x 4k)

-
Processing

SoftwareName: PHENIX / Version: 1.17.1_3660: / Classification: refinement
EM softwareName: PHENIX / Category: model refinement
CTF correctionType: PHASE FLIPPING ONLY
Helical symmertyAngular rotation/subunit: -1.64 ° / Axial rise/subunit: 4.8 Å / Axial symmetry: C1
3D reconstructionResolution: 3.2 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 20867 / Symmetry type: HELICAL
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.0033576
ELECTRON MICROSCOPYf_angle_d0.5794848
ELECTRON MICROSCOPYf_dihedral_angle_d6.185522
ELECTRON MICROSCOPYf_chiral_restr0.049648
ELECTRON MICROSCOPYf_plane_restr0.003618

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more