[English] 日本語
Yorodumi
- PDB-7bpa: Human AAA+ ATPase VCP mutant - T76A, AMP-PNP-bound form, Conforma... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7bpa
TitleHuman AAA+ ATPase VCP mutant - T76A, AMP-PNP-bound form, Conformation I
ComponentsTransitional endoplasmic reticulum ATPase
KeywordsCELL CYCLE / Complex / ATPase / Unfoldase / Protein Transportation
Function / homology
Function and homology information


positive regulation of Lys63-specific deubiquitinase activity / flavin adenine dinucleotide catabolic process / positive regulation of oxidative phosphorylation / VCP-NSFL1C complex / cytoplasm protein quality control / endosome to lysosome transport via multivesicular body sorting pathway / endoplasmic reticulum stress-induced pre-emptive quality control / cellular response to arsenite ion / Derlin-1 retrotranslocation complex / BAT3 complex binding ...positive regulation of Lys63-specific deubiquitinase activity / flavin adenine dinucleotide catabolic process / positive regulation of oxidative phosphorylation / VCP-NSFL1C complex / cytoplasm protein quality control / endosome to lysosome transport via multivesicular body sorting pathway / endoplasmic reticulum stress-induced pre-emptive quality control / cellular response to arsenite ion / Derlin-1 retrotranslocation complex / BAT3 complex binding / protein-DNA covalent cross-linking repair / positive regulation of protein K63-linked deubiquitination / deubiquitinase activator activity / mitotic spindle disassembly / VCP-NPL4-UFD1 AAA ATPase complex / ubiquitin-modified protein reader activity / regulation of protein localization to chromatin / aggresome assembly / NADH metabolic process / vesicle-fusing ATPase / cellular response to misfolded protein / stress granule disassembly / negative regulation of protein localization to chromatin / positive regulation of mitochondrial membrane potential / retrograde protein transport, ER to cytosol / K48-linked polyubiquitin modification-dependent protein binding / regulation of aerobic respiration / regulation of synapse organization / positive regulation of ATP biosynthetic process / ATPase complex / ubiquitin-specific protease binding / MHC class I protein binding / ubiquitin-like protein ligase binding / RHOH GTPase cycle / polyubiquitin modification-dependent protein binding / autophagosome maturation / HSF1 activation / negative regulation of hippo signaling / endoplasmic reticulum to Golgi vesicle-mediated transport / translesion synthesis / proteasomal protein catabolic process / Protein methylation / interstrand cross-link repair / ATP metabolic process / negative regulation of smoothened signaling pathway / endoplasmic reticulum unfolded protein response / ERAD pathway / Attachment and Entry / proteasome complex / viral genome replication / lipid droplet / Josephin domain DUBs / N-glycan trimming in the ER and Calnexin/Calreticulin cycle / macroautophagy / Hh mutants are degraded by ERAD / Hedgehog ligand biogenesis / Defective CFTR causes cystic fibrosis / positive regulation of protein-containing complex assembly / ADP binding / Translesion Synthesis by POLH / establishment of protein localization / ABC-family proteins mediated transport / : / autophagy / Aggrephagy / cytoplasmic stress granule / positive regulation of non-canonical NF-kappaB signal transduction / positive regulation of protein catabolic process / azurophil granule lumen / KEAP1-NFE2L2 pathway / positive regulation of canonical Wnt signaling pathway / Ovarian tumor domain proteases / double-strand break repair / positive regulation of proteasomal ubiquitin-dependent protein catabolic process / E3 ubiquitin ligases ubiquitinate target proteins / site of double-strand break / Neddylation / cellular response to heat / ubiquitin-dependent protein catabolic process / protein phosphatase binding / secretory granule lumen / regulation of apoptotic process / proteasome-mediated ubiquitin-dependent protein catabolic process / ficolin-1-rich granule lumen / Attachment and Entry / protein ubiquitination / protein domain specific binding / intracellular membrane-bounded organelle / DNA repair / lipid binding / DNA damage response / glutamatergic synapse / ubiquitin protein ligase binding / Neutrophil degranulation / endoplasmic reticulum membrane / perinuclear region of cytoplasm / endoplasmic reticulum / ATP hydrolysis activity / protein-containing complex / RNA binding
Similarity search - Function
Vps4 C terminal oligomerisation domain / AAA ATPase, CDC48 family / Cell division protein 48 (CDC48), N-terminal domain / CDC48, N-terminal subdomain / Cell division protein 48 (CDC48) N-terminal domain / CDC48, domain 2 / Cell division protein 48 (CDC48), domain 2 / Cell division protein 48 (CDC48) domain 2 / CDC48 domain 2-like superfamily / : ...Vps4 C terminal oligomerisation domain / AAA ATPase, CDC48 family / Cell division protein 48 (CDC48), N-terminal domain / CDC48, N-terminal subdomain / Cell division protein 48 (CDC48) N-terminal domain / CDC48, domain 2 / Cell division protein 48 (CDC48), domain 2 / Cell division protein 48 (CDC48) domain 2 / CDC48 domain 2-like superfamily / : / Aspartate decarboxylase-like domain superfamily / AAA ATPase, AAA+ lid domain / AAA+ lid domain / ATPase, AAA-type, conserved site / AAA-protein family signature. / ATPase family associated with various cellular activities (AAA) / ATPase, AAA-type, core / ATPases associated with a variety of cellular activities / AAA+ ATPase domain / P-loop containing nucleoside triphosphate hydrolase
Similarity search - Domain/homology
ADENOSINE-5'-DIPHOSPHATE / PHOSPHOAMINOPHOSPHONIC ACID-ADENYLATE ESTER / Transitional endoplasmic reticulum ATPase
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.3 Å
AuthorsYang, C. / Zhang, H.
CitationJournal: Cell Death Differ / Year: 2022
Title: The phosphorylation and dephosphorylation switch of VCP/p97 regulates the architecture of centrosome and spindle.
Authors: Kaiyuan Zhu / Yang Cai / Xiaotong Si / Zuodong Ye / Yuanzhu Gao / Chuang Liu / Rui Wang / Zhibin Ma / Huazhang Zhu / Liang Zhang / Shengjin Li / Hongmin Zhang / Jianbo Yue /
Abstract: The proper orientation of centrosome and spindle is essential for genome stability; however, the mechanism that governs these processes remains elusive. Here, we demonstrated that polo-like kinase 1 ...The proper orientation of centrosome and spindle is essential for genome stability; however, the mechanism that governs these processes remains elusive. Here, we demonstrated that polo-like kinase 1 (Plk1), a key mitotic kinase, phosphorylates residue Thr76 in VCP/p97 (an AAA-ATPase), at the centrosome from prophase to anaphase. This phosphorylation process recruits VCP to the centrosome and in this way, it regulates centrosome orientation. VCP exhibits strong co-localization with Eg5 (a mitotic kinesin motor), at the mitotic spindle, and the dephosphorylation of Thr76 in VCP is required for the enrichment of both VCP and Eg5 at the spindle, thus ensuring proper spindle architecture and chromosome segregation. We also showed that the phosphatase, PTEN, is responsible for the dephosphorylation of Thr76 in VCP; when PTEN was knocked down, the normal spread of VCP from the centrosome to the spindle was abolished. Cryo-EM structures of VCP and VCP, which represent dephosphorylated and phosphorylated states of VCP, respectively, revealed that the Thr76 phosphorylation modulates VCP by altering the inter-domain and inter-subunit interactions, and ultimately the nucleotide-binding pocket conformation. Interestingly, the tumor growth in nude mice implanted with VCP-reconstituted cancer cells was significantly slower when compared with those implanted with VCP-reconstituted cancer cells. Collectively, our findings demonstrate that the phosphorylation and dephosphorylation switch of VCP regulates the architecture of centrosome and spindle for faithful chromosome segregation.
History
DepositionMar 21, 2020Deposition site: PDBJ / Processing site: PDBJ
Revision 1.0Mar 31, 2021Provider: repository / Type: Initial release
Revision 1.1Apr 27, 2022Group: Database references / Category: citation / citation_author / database_2
Item: _citation.country / _citation.journal_abbrev ..._citation.country / _citation.journal_abbrev / _citation.journal_id_CSD / _citation.journal_id_ISSN / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year / _database_2.pdbx_DOI / _database_2.pdbx_database_accession

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-30149
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Transitional endoplasmic reticulum ATPase
B: Transitional endoplasmic reticulum ATPase
C: Transitional endoplasmic reticulum ATPase
D: Transitional endoplasmic reticulum ATPase
E: Transitional endoplasmic reticulum ATPase
F: Transitional endoplasmic reticulum ATPase
hetero molecules


Theoretical massNumber of molelcules
Total (without water)542,04118
Polymers536,4416
Non-polymers5,60012
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: gel filtration
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein
Transitional endoplasmic reticulum ATPase / TER ATPase / 15S Mg(2+)-ATPase p97 subunit / Valosin-containing protein / VCP


Mass: 89406.789 Da / Num. of mol.: 6 / Mutation: T76A
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: VCP / Plasmid: pET / Production host: Escherichia coli (E. coli) / Variant (production host): T7 SHuffle (NEB 3026) / References: UniProt: P55072, vesicle-fusing ATPase
#2: Chemical
ChemComp-ADP / ADENOSINE-5'-DIPHOSPHATE


Mass: 427.201 Da / Num. of mol.: 6 / Source method: obtained synthetically / Formula: C10H15N5O10P2 / Feature type: SUBJECT OF INVESTIGATION / Comment: ADP, energy-carrying molecule*YM
#3: Chemical
ChemComp-ANP / PHOSPHOAMINOPHOSPHONIC ACID-ADENYLATE ESTER


Mass: 506.196 Da / Num. of mol.: 6 / Source method: obtained synthetically / Formula: C10H17N6O12P3 / Feature type: SUBJECT OF INVESTIGATION / Comment: AMP-PNP, energy-carrying molecule analogue*YM
Has ligand of interestY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Transitional endoplasmic reticulum ATPase, VCP. / Type: COMPLEX
Details: T76A mutant of VCP of AMP-PNP-bound form, Conformation I
Entity ID: #1 / Source: RECOMBINANT
Molecular weightValue: 97 kDa/nm / Experimental value: YES
Source (natural)Organism: Homo sapiens (human) / Cellular location: cytoplasm nucleus ER
Source (recombinant)Organism: Escherichia coli (E. coli) / Strain: T7 SHuffle (NEB C3026) / Plasmid: pET
Buffer solutionpH: 7.5
Buffer component
IDConc.NameFormulaBuffer-ID
125 mMHEPESHEPES1
250 mMSodium ChlorideNaCl1
35 mMMagnesium ChlorideMgCl21
40.001 %2-Mercaptoethanol2-ME1
SpecimenConc.: 2 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportGrid material: COPPER
VitrificationInstrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: OTHER
Electron lensMode: BRIGHT FIELD
Image recordingElectron dose: 50 e/Å2 / Detector mode: COUNTING / Film or detector model: FEI FALCON III (4k x 4k)

-
Processing

SoftwareName: PHENIX / Version: 1.16_3549: / Classification: refinement
EM software
IDNameVersionCategory
2EPUimage acquisition
4RELION3.0.6CTF correction
7PHENIX1.14model fitting
9PHENIX1.14model refinement
10cisTEMBeta- 1.0.0initial Euler assignment
11cisTEMBeta- 1.0.0final Euler assignment
12RELION3.0.6classification
13cisTEM3.0.63D reconstruction
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
SymmetryPoint symmetry: C6 (6 fold cyclic)
3D reconstructionResolution: 3.3 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 229297 / Symmetry type: POINT
Atomic model buildingProtocol: RIGID BODY FIT
RefinementHighest resolution: 3.3 Å
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00835958
ELECTRON MICROSCOPYf_angle_d1.21448618
ELECTRON MICROSCOPYf_dihedral_angle_d8.39731302
ELECTRON MICROSCOPYf_chiral_restr0.0735448
ELECTRON MICROSCOPYf_plane_restr0.0076408

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more