[English] 日本語
Yorodumi
- PDB-6vp7: Cryo-EM structure of the C-terminal half of the Parkinson's Disea... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 6vp7
TitleCryo-EM structure of the C-terminal half of the Parkinson's Disease-linked protein Leucine Rich Repeat Kinase 2 (LRRK2)
ComponentsLeucine-rich repeat serine/threonine-protein kinase 2
KeywordsSIGNALING PROTEIN / Kinase / GTPase
Function / homology
Function and homology information


peroxidase inhibitor activity / caveola neck / negative regulation of thioredoxin peroxidase activity by peptidyl-threonine phosphorylation / negative regulation of protein processing involved in protein targeting to mitochondrion / Wnt signalosome assembly / beta-catenin destruction complex binding / regulation of branching morphogenesis of a nerve / regulation of kidney size / regulation of neuron maturation / tangential migration from the subventricular zone to the olfactory bulb ...peroxidase inhibitor activity / caveola neck / negative regulation of thioredoxin peroxidase activity by peptidyl-threonine phosphorylation / negative regulation of protein processing involved in protein targeting to mitochondrion / Wnt signalosome assembly / beta-catenin destruction complex binding / regulation of branching morphogenesis of a nerve / regulation of kidney size / regulation of neuron maturation / tangential migration from the subventricular zone to the olfactory bulb / protein localization to endoplasmic reticulum exit site / GTP-dependent protein kinase activity / regulation of neuroblast proliferation / regulation of ER to Golgi vesicle-mediated transport / negative regulation of late endosome to lysosome transport / regulation of mitochondrial depolarization / negative regulation of protein targeting to mitochondrion / regulation of synaptic vesicle transport / regulation of lysosomal lumen pH / positive regulation of dopamine receptor signaling pathway / amphisome / regulation of CAMKK-AMPK signaling cascade / cytoplasmic side of mitochondrial outer membrane / co-receptor binding / mitochondrion localization / regulation of retrograde transport, endosome to Golgi / negative regulation of excitatory postsynaptic potential / regulation of dopamine receptor signaling pathway / negative regulation of autophagosome assembly / positive regulation of microglial cell activation / neuron projection arborization / positive regulation of synaptic vesicle endocytosis / JUN kinase kinase kinase activity / olfactory bulb development / regulation of protein kinase A signaling / regulation of dendritic spine morphogenesis / striatum development / multivesicular body, internal vesicle / protein localization to mitochondrion / cellular response to dopamine / endoplasmic reticulum organization / positive regulation of protein autoubiquitination / presynaptic cytosol / positive regulation of programmed cell death / Wnt signalosome / GTP metabolic process / negative regulation of protein processing / regulation of canonical Wnt signaling pathway / syntaxin-1 binding / negative regulation of GTPase activity / regulation of reactive oxygen species metabolic process / exploration behavior / regulation of locomotion / protein kinase A binding / regulation of synaptic vesicle exocytosis / PTK6 promotes HIF1A stabilization / Golgi-associated vesicle / negative regulation of macroautophagy / clathrin binding / neuromuscular junction development / lysosome organization / regulation of mitochondrial fission / intracellular distribution of mitochondria / Golgi organization / autolysosome / : / locomotory exploration behavior / endoplasmic reticulum exit site / microvillus / Rho protein signal transduction / MAP kinase kinase kinase activity / positive regulation of protein kinase activity / cellular response to manganese ion / canonical Wnt signaling pathway / negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway / phosphorylation / positive regulation of autophagy / JNK cascade / regulation of synaptic transmission, glutamatergic / dendrite cytoplasm / GTPase activator activity / tubulin binding / cellular response to starvation / neuron projection morphogenesis / regulation of membrane potential / SNARE binding / excitatory postsynaptic potential / negative regulation of protein phosphorylation / negative regulation of protein binding / positive regulation of protein ubiquitination / regulation of autophagy / mitochondrion organization / determination of adult lifespan / peptidyl-threonine phosphorylation / mitochondrial membrane / calcium-mediated signaling / positive regulation of MAP kinase activity / trans-Golgi network / regulation of protein stability / terminal bouton
Similarity search - Function
: / C-terminal of Roc (COR) domain / C-terminal of Roc, COR, domain / Ras of Complex, Roc, domain of DAPkinase / Roc domain profile. / Roc domain / Leucine-rich repeats, bacterial type / Leucine rich repeat / Leucine-rich repeat, typical subtype / Leucine-rich repeats, typical (most populated) subfamily ...: / C-terminal of Roc (COR) domain / C-terminal of Roc, COR, domain / Ras of Complex, Roc, domain of DAPkinase / Roc domain profile. / Roc domain / Leucine-rich repeats, bacterial type / Leucine rich repeat / Leucine-rich repeat, typical subtype / Leucine-rich repeats, typical (most populated) subfamily / Leucine-rich repeat profile. / Leucine-rich repeat / Rab subfamily of small GTPases / Leucine-rich repeat domain superfamily / Ankyrin repeat-containing domain superfamily / Armadillo-like helical / Small GTP-binding protein domain / Armadillo-type fold / WD40-repeat-containing domain superfamily / Serine/threonine-protein kinase, active site / Serine/Threonine protein kinases active-site signature. / Protein kinase domain / WD40/YVTN repeat-like-containing domain superfamily / Serine/Threonine protein kinases, catalytic domain / Protein kinase, ATP binding site / Protein kinases ATP-binding region signature. / Protein kinase domain profile. / Protein kinase domain / Protein kinase-like domain superfamily / P-loop containing nucleoside triphosphate hydrolase
Similarity search - Domain/homology
Leucine-rich repeat serine/threonine-protein kinase 2
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.5 Å
AuthorsLeschziner, A. / Deniston, C. / Lahiri, I.
Funding support United States, 3items
OrganizationGrant numberCountry
Michael J. Fox Foundation11425 United States
Michael J. Fox Foundation11425.02 United States
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)R01GM107214 United States
CitationJournal: Nature / Year: 2020
Title: Structure of LRRK2 in Parkinson's disease and model for microtubule interaction.
Authors: C K Deniston / J Salogiannis / S Mathea / D M Snead / I Lahiri / M Matyszewski / O Donosa / R Watanabe / J Böhning / A K Shiau / S Knapp / E Villa / S L Reck-Peterson / A E Leschziner /
Abstract: Leucine-rich repeat kinase 2 (LRRK2) is the most commonly mutated gene in familial Parkinson's disease and is also linked to its idiopathic form. LRRK2 has been proposed to function in membrane ...Leucine-rich repeat kinase 2 (LRRK2) is the most commonly mutated gene in familial Parkinson's disease and is also linked to its idiopathic form. LRRK2 has been proposed to function in membrane trafficking and colocalizes with microtubules. Despite the fundamental importance of LRRK2 for understanding and treating Parkinson's disease, structural information on the enzyme is limited. Here we report the structure of the catalytic half of LRRK2, and an atomic model of microtubule-associated LRRK2 built using a reported cryo-electron tomography in situ structure. We propose that the conformation of the LRRK2 kinase domain regulates its interactions with microtubules, with a closed conformation favouring oligomerization on microtubules. We show that the catalytic half of LRRK2 is sufficient for filament formation and blocks the motility of the microtubule-based motors kinesin 1 and cytoplasmic dynein 1 in vitro. Kinase inhibitors that stabilize an open conformation relieve this interference and reduce the formation of LRRK2 filaments in cells, whereas inhibitors that stabilize a closed conformation do not. Our findings suggest that LRRK2 can act as a roadblock for microtubule-based motors and have implications for the design of therapeutic LRRK2 kinase inhibitors.
History
DepositionFeb 1, 2020Deposition site: RCSB / Processing site: RCSB
Revision 1.0Aug 26, 2020Provider: repository / Type: Initial release
Revision 1.1Sep 2, 2020Group: Database references / Category: citation / citation_author
Item: _citation.country / _citation.journal_abbrev ..._citation.country / _citation.journal_abbrev / _citation.journal_id_ASTM / _citation.journal_id_CSD / _citation.journal_id_ISSN / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year
Revision 1.2Dec 23, 2020Group: Database references / Category: citation
Item: _citation.journal_volume / _citation.page_first / _citation.page_last
Revision 1.3Oct 9, 2024Group: Data collection / Database references / Structure summary
Category: chem_comp_atom / chem_comp_bond ...chem_comp_atom / chem_comp_bond / database_2 / em_admin / em_author_list / pdbx_entry_details / pdbx_modification_feature
Item: _database_2.pdbx_DOI / _database_2.pdbx_database_accession / _pdbx_entry_details.has_protein_modification

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Simplified surface model + fitted atomic model
  • EMDB-21250
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-21250
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Leucine-rich repeat serine/threonine-protein kinase 2


Theoretical massNumber of molelcules
Total (without water)136,9441
Polymers136,9441
Non-polymers00
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: microscopy
TypeNameSymmetry operationNumber
identity operation1_5551
Buried area0 Å2
ΔGint0 kcal/mol
Surface area51830 Å2
Number of models10

-
Components

#1: Protein Leucine-rich repeat serine/threonine-protein kinase 2 / Dardarin


Mass: 136943.609 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Details: C-terminal residues 1327-2527 / Source: (gene. exp.) Homo sapiens (human) / Gene: LRRK2, PARK8 / Production host: Spodoptera frugiperda (fall armyworm)
References: UniProt: Q5S007, non-specific serine/threonine protein kinase, Hydrolases; Acting on acid anhydrides; Acting on GTP to facilitate cellular and subcellular movement
Has ligand of interestN
Has protein modificationY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: The C-terminal half of the Leucine Rich Repeat Kinase 2 (LRRK2) protein.
Type: COMPLEX / Details: C-terminal half runs from residue 1327-2527. / Entity ID: all / Source: RECOMBINANT
Molecular weightValue: 0.137 MDa / Experimental value: NO
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Spodoptera frugiperda (fall armyworm)
Buffer solutionpH: 7.4
Buffer component
IDConc.NameFormulaBuffer-ID
120 mMHEPES1
280 mMNaCl1
30.5 mMTCEP1
45 %Glycerol1
52.5 mMMgCl21
620 uMGDP1
SpecimenConc.: 0.5 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES / Details: 4uM concentration
Specimen supportGrid material: GOLD / Grid type: Quantifoil, UltrAuFoil, R1.2/1.3
VitrificationInstrument: FEI VITROBOT MARK II / Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 277 K

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal magnification: 130000 X / Calibrated defocus min: 1000 nm / Calibrated defocus max: 1800 nm / Cs: 2.7 mm
Specimen holderCryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER
Image recordingAverage exposure time: 8 sec. / Electron dose: 6.65 e/Å2 / Detector mode: COUNTING / Film or detector model: GATAN K2 SUMMIT (4k x 4k) / Num. of grids imaged: 1 / Num. of real images: 3826
EM imaging opticsEnergyfilter name: GIF 2002
Image scansMovie frames/image: 40

-
Processing

EM software
IDNameVersionCategoryDetails
2Leginon3image acquisition
4Gctf1CTF correction
7Rosetta3model fitting
9Rosetta3model refinement
10RELION3initial Euler assignment
11cryoSPARC2initial Euler assignment
12RELION3final Euler assignment
13cryoSPARC2final Euler assignment
15RELION33D reconstructionC1
16cryoSPARC23D reconstructionC3
CTF correctionDetails: Per-particle CTF values / Type: PHASE FLIPPING AND AMPLITUDE CORRECTION
Particle selectionNum. of particles selected: 836956
SymmetryPoint symmetry: C3 (3 fold cyclic)
3D reconstructionResolution: 3.5 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 70953
Details: For the signal subtracted map, 105,787 particles went into the final map that achieved 3.8A resolution
Symmetry type: POINT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more