[English] 日本語

- PDB-6vha: Singlet Tau Fibril from Corticobasal Degeneration Human Brain Tissue -
+
Open data
-
Basic information
Entry | Database: PDB / ID: 6vha | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | Singlet Tau Fibril from Corticobasal Degeneration Human Brain Tissue | ||||||||||||||||||||||||
![]() | Microtubule-associated protein tau | ||||||||||||||||||||||||
![]() | PROTEIN FIBRIL / Pathological amyloid fibril / cross-beta fold / parallel beta-sheets | ||||||||||||||||||||||||
Function / homology | ![]() plus-end-directed organelle transport along microtubule / histone-dependent DNA binding / negative regulation of establishment of protein localization to mitochondrion / neurofibrillary tangle / microtubule lateral binding / axonal transport / tubulin complex / positive regulation of protein localization to synapse / phosphatidylinositol bisphosphate binding / negative regulation of tubulin deacetylation ...plus-end-directed organelle transport along microtubule / histone-dependent DNA binding / negative regulation of establishment of protein localization to mitochondrion / neurofibrillary tangle / microtubule lateral binding / axonal transport / tubulin complex / positive regulation of protein localization to synapse / phosphatidylinositol bisphosphate binding / negative regulation of tubulin deacetylation / generation of neurons / rRNA metabolic process / axonal transport of mitochondrion / regulation of chromosome organization / regulation of mitochondrial fission / axon development / central nervous system neuron development / intracellular distribution of mitochondria / minor groove of adenine-thymine-rich DNA binding / lipoprotein particle binding / microtubule polymerization / negative regulation of mitochondrial membrane potential / regulation of microtubule polymerization / dynactin binding / apolipoprotein binding / main axon / protein polymerization / glial cell projection / axolemma / negative regulation of mitochondrial fission / Caspase-mediated cleavage of cytoskeletal proteins / regulation of microtubule polymerization or depolymerization / neurofibrillary tangle assembly / positive regulation of axon extension / Activation of AMPK downstream of NMDARs / regulation of cellular response to heat / positive regulation of superoxide anion generation / supramolecular fiber organization / synapse assembly / regulation of long-term synaptic depression / positive regulation of protein localization / cellular response to brain-derived neurotrophic factor stimulus / regulation of calcium-mediated signaling / cytoplasmic microtubule organization / positive regulation of microtubule polymerization / somatodendritic compartment / axon cytoplasm / astrocyte activation / stress granule assembly / phosphatidylinositol binding / nuclear periphery / regulation of microtubule cytoskeleton organization / protein phosphatase 2A binding / cellular response to reactive oxygen species / Hsp90 protein binding / microglial cell activation / synapse organization / PKR-mediated signaling / cellular response to nerve growth factor stimulus / protein homooligomerization / regulation of synaptic plasticity / SH3 domain binding / response to lead ion / microtubule cytoskeleton organization / memory / cytoplasmic ribonucleoprotein granule / neuron projection development / cell-cell signaling / single-stranded DNA binding / protein-folding chaperone binding / actin binding / cellular response to heat / growth cone / microtubule cytoskeleton / cell body / double-stranded DNA binding / protein-macromolecule adaptor activity / microtubule binding / dendritic spine / sequence-specific DNA binding / amyloid fibril formation / microtubule / learning or memory / neuron projection / regulation of autophagy / membrane raft / axon / negative regulation of gene expression / neuronal cell body / dendrite / DNA damage response / protein kinase binding / enzyme binding / mitochondrion / DNA binding / RNA binding / extracellular region / identical protein binding / nucleus / plasma membrane Similarity search - Function | ||||||||||||||||||||||||
Biological species | ![]() | ||||||||||||||||||||||||
Method | ELECTRON MICROSCOPY / helical reconstruction / cryo EM / Resolution: 4.3 Å | ||||||||||||||||||||||||
![]() | Arakhamia, T. / Lee, C.E. / Carlomagno, Y. / Duong, D.M. / Kundinger, S.R. / Wang, K. / Williams, D. / DeTure, M. / Dickson, D.W. / Cook, C.N. ...Arakhamia, T. / Lee, C.E. / Carlomagno, Y. / Duong, D.M. / Kundinger, S.R. / Wang, K. / Williams, D. / DeTure, M. / Dickson, D.W. / Cook, C.N. / Seyfried, N.T. / Petrucelli, L. / Fitzpatrick, A.W.P. | ||||||||||||||||||||||||
Funding support | ![]()
| ||||||||||||||||||||||||
![]() | ![]() Title: Posttranslational Modifications Mediate the Structural Diversity of Tauopathy Strains. Authors: Tamta Arakhamia / Christina E Lee / Yari Carlomagno / Duc M Duong / Sean R Kundinger / Kevin Wang / Dewight Williams / Michael DeTure / Dennis W Dickson / Casey N Cook / Nicholas T Seyfried ...Authors: Tamta Arakhamia / Christina E Lee / Yari Carlomagno / Duc M Duong / Sean R Kundinger / Kevin Wang / Dewight Williams / Michael DeTure / Dennis W Dickson / Casey N Cook / Nicholas T Seyfried / Leonard Petrucelli / Anthony W P Fitzpatrick / ![]() Abstract: Tau aggregation into insoluble filaments is the defining pathological hallmark of tauopathies. However, it is not known what controls the formation and templated seeding of strain-specific structures ...Tau aggregation into insoluble filaments is the defining pathological hallmark of tauopathies. However, it is not known what controls the formation and templated seeding of strain-specific structures associated with individual tauopathies. Here, we use cryo-electron microscopy (cryo-EM) to determine the structures of tau filaments from corticobasal degeneration (CBD) human brain tissue. Cryo-EM and mass spectrometry of tau filaments from CBD reveal that this conformer is heavily decorated with posttranslational modifications (PTMs), enabling us to map PTMs directly onto the structures. By comparing the structures and PTMs of tau filaments from CBD and Alzheimer's disease, it is found that ubiquitination of tau can mediate inter-protofilament interfaces. We propose a structure-based model in which cross-talk between PTMs influences tau filament structure, contributing to the structural diversity of tauopathy strains. Our approach establishes a framework for further elucidating the relationship between the structures of polymorphic fibrils, including their PTMs, and neurodegenerative disease. | ||||||||||||||||||||||||
History |
|
-
Structure visualization
Movie |
![]() |
---|---|
Structure viewer | Molecule: ![]() ![]() |
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 63 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 46.7 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Summary document | ![]() | 582.4 KB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 591.9 KB | Display | |
Data in XML | ![]() | 16.1 KB | Display | |
Data in CIF | ![]() | 23.1 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 21201MC ![]() 6vh7C ![]() 6vhlC ![]() 6vi3C M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
#1: Protein | Mass: 11608.375 Da / Num. of mol.: 3 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() Has protein modification | N | |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: FILAMENT / 3D reconstruction method: helical reconstruction |
-
Sample preparation
Component | Name: Singlet Tau Fibril from Corticobasal Degeneration Human Brain Tissue Type: TISSUE / Entity ID: all / Source: NATURAL |
---|---|
Source (natural) | Organism: ![]() |
Buffer solution | pH: 7.4 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Specimen support | Details: unspecified |
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD |
Image recording | Electron dose: 60 e/Å2 / Film or detector model: GATAN K2 SUMMIT (4k x 4k) |
-
Processing
Software | Name: PHENIX / Version: 1.17.1_3660: / Classification: refinement | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EM software | Name: PHENIX / Category: model refinement | ||||||||||||||||||||||||
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||||||||||||||
Helical symmerty | Angular rotation/subunit: -0.85 ° / Axial rise/subunit: 4.8 Å / Axial symmetry: C1 | ||||||||||||||||||||||||
3D reconstruction | Resolution: 4.3 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 9929 / Symmetry type: HELICAL | ||||||||||||||||||||||||
Refine LS restraints |
|