[English] 日本語
Yorodumi- PDB-6vh7: Doublet Tau Fibril from Corticobasal Degeneration Human Brain Tissue -
+Open data
-Basic information
Entry | Database: PDB / ID: 6vh7 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Doublet Tau Fibril from Corticobasal Degeneration Human Brain Tissue | |||||||||
Components | Microtubule-associated protein tau | |||||||||
Keywords | PROTEIN FIBRIL / Pathological amyloid fibril / cross-beta fold / parallel beta-sheets | |||||||||
Function / homology | Function and homology information plus-end-directed organelle transport along microtubule / histone-dependent DNA binding / neurofibrillary tangle assembly / positive regulation of diacylglycerol kinase activity / axonal transport / negative regulation of establishment of protein localization to mitochondrion / neurofibrillary tangle / positive regulation of protein localization to synapse / microtubule lateral binding / tubulin complex ...plus-end-directed organelle transport along microtubule / histone-dependent DNA binding / neurofibrillary tangle assembly / positive regulation of diacylglycerol kinase activity / axonal transport / negative regulation of establishment of protein localization to mitochondrion / neurofibrillary tangle / positive regulation of protein localization to synapse / microtubule lateral binding / tubulin complex / phosphatidylinositol bisphosphate binding / main axon / negative regulation of kinase activity / regulation of long-term synaptic depression / negative regulation of tubulin deacetylation / generation of neurons / rRNA metabolic process / internal protein amino acid acetylation / regulation of chromosome organization / regulation of mitochondrial fission / axonal transport of mitochondrion / intracellular distribution of mitochondria / axon development / central nervous system neuron development / regulation of microtubule polymerization / microtubule polymerization / lipoprotein particle binding / minor groove of adenine-thymine-rich DNA binding / dynactin binding / negative regulation of mitochondrial membrane potential / glial cell projection / apolipoprotein binding / protein polymerization / axolemma / negative regulation of mitochondrial fission / regulation of microtubule polymerization or depolymerization / Caspase-mediated cleavage of cytoskeletal proteins / positive regulation of axon extension / regulation of microtubule cytoskeleton organization / Activation of AMPK downstream of NMDARs / regulation of cellular response to heat / positive regulation of protein localization / cytoplasmic microtubule organization / stress granule assembly / supramolecular fiber organization / regulation of calcium-mediated signaling / axon cytoplasm / somatodendritic compartment / positive regulation of microtubule polymerization / synapse assembly / cellular response to brain-derived neurotrophic factor stimulus / nuclear periphery / phosphatidylinositol binding / cellular response to nerve growth factor stimulus / positive regulation of superoxide anion generation / protein phosphatase 2A binding / regulation of autophagy / astrocyte activation / response to lead ion / microglial cell activation / synapse organization / Hsp90 protein binding / PKR-mediated signaling / protein homooligomerization / regulation of synaptic plasticity / : / memory / microtubule cytoskeleton organization / SH3 domain binding / cytoplasmic ribonucleoprotein granule / cellular response to reactive oxygen species / microtubule cytoskeleton / neuron projection development / cell-cell signaling / single-stranded DNA binding / protein-folding chaperone binding / actin binding / cellular response to heat / protein-macromolecule adaptor activity / growth cone / cell body / double-stranded DNA binding / microtubule binding / sequence-specific DNA binding / microtubule / amyloid fibril formation / dendritic spine / learning or memory / nuclear speck / neuron projection / membrane raft / axon / negative regulation of gene expression / neuronal cell body / DNA damage response / dendrite / protein kinase binding / enzyme binding / mitochondrion / DNA binding Similarity search - Function | |||||||||
Biological species | Homo sapiens (human) | |||||||||
Method | ELECTRON MICROSCOPY / helical reconstruction / cryo EM / Resolution: 3.8 Å | |||||||||
Authors | Arakhamia, T. / Lee, C.E. / Carlomagno, Y. / Duong, D.M. / Kundinger, S.R. / Wang, K. / Williams, D. / DeTure, M. / Dickson, D.W. / Cook, C.N. ...Arakhamia, T. / Lee, C.E. / Carlomagno, Y. / Duong, D.M. / Kundinger, S.R. / Wang, K. / Williams, D. / DeTure, M. / Dickson, D.W. / Cook, C.N. / Seyfried, N.T. / Petrucelli, L. / Fitzpatrick, A.W.P. | |||||||||
Funding support | United States, 2items
| |||||||||
Citation | Journal: Cell / Year: 2020 Title: Posttranslational Modifications Mediate the Structural Diversity of Tauopathy Strains. Authors: Tamta Arakhamia / Christina E Lee / Yari Carlomagno / Duc M Duong / Sean R Kundinger / Kevin Wang / Dewight Williams / Michael DeTure / Dennis W Dickson / Casey N Cook / Nicholas T Seyfried ...Authors: Tamta Arakhamia / Christina E Lee / Yari Carlomagno / Duc M Duong / Sean R Kundinger / Kevin Wang / Dewight Williams / Michael DeTure / Dennis W Dickson / Casey N Cook / Nicholas T Seyfried / Leonard Petrucelli / Anthony W P Fitzpatrick / Abstract: Tau aggregation into insoluble filaments is the defining pathological hallmark of tauopathies. However, it is not known what controls the formation and templated seeding of strain-specific structures ...Tau aggregation into insoluble filaments is the defining pathological hallmark of tauopathies. However, it is not known what controls the formation and templated seeding of strain-specific structures associated with individual tauopathies. Here, we use cryo-electron microscopy (cryo-EM) to determine the structures of tau filaments from corticobasal degeneration (CBD) human brain tissue. Cryo-EM and mass spectrometry of tau filaments from CBD reveal that this conformer is heavily decorated with posttranslational modifications (PTMs), enabling us to map PTMs directly onto the structures. By comparing the structures and PTMs of tau filaments from CBD and Alzheimer's disease, it is found that ubiquitination of tau can mediate inter-protofilament interfaces. We propose a structure-based model in which cross-talk between PTMs influences tau filament structure, contributing to the structural diversity of tauopathy strains. Our approach establishes a framework for further elucidating the relationship between the structures of polymorphic fibrils, including their PTMs, and neurodegenerative disease. | |||||||||
History |
|
-Structure visualization
Movie |
Movie viewer |
---|---|
Structure viewer | Molecule: MolmilJmol/JSmol |
-Downloads & links
-Download
PDBx/mmCIF format | 6vh7.cif.gz | 112.9 KB | Display | PDBx/mmCIF format |
---|---|---|---|---|
PDB format | pdb6vh7.ent.gz | 90 KB | Display | PDB format |
PDBx/mmJSON format | 6vh7.json.gz | Tree view | PDBx/mmJSON format | |
Others | Other downloads |
-Validation report
Summary document | 6vh7_validation.pdf.gz | 598.2 KB | Display | wwPDB validaton report |
---|---|---|---|---|
Full document | 6vh7_full_validation.pdf.gz | 621.3 KB | Display | |
Data in XML | 6vh7_validation.xml.gz | 22.1 KB | Display | |
Data in CIF | 6vh7_validation.cif.gz | 34.3 KB | Display | |
Arichive directory | https://data.pdbj.org/pub/pdb/validation_reports/vh/6vh7 ftp://data.pdbj.org/pub/pdb/validation_reports/vh/6vh7 | HTTPS FTP |
-Related structure data
Related structure data | 21200MC 6vhaC 6vhlC 6vi3C M: map data used to model this data C: citing same article (ref.) |
---|---|
Similar structure data |
-Links
-Assembly
Deposited unit |
|
---|---|
1 |
|
-Components
#1: Protein | Mass: 11608.375 Da / Num. of mol.: 6 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Homo sapiens (human) / Gene: MAPT, MAPTL, MTBT1, TAU / Production host: Homo sapiens (human) / References: UniProt: P10636 |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: FILAMENT / 3D reconstruction method: helical reconstruction |
-Sample preparation
Component | Name: Doublet Tau Fibril from Corticobasal Degeneration Human Brain Tissue Type: TISSUE / Entity ID: all / Source: NATURAL |
---|---|
Source (natural) | Organism: Homo sapiens (human) |
Buffer solution | pH: 7.4 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Specimen support | Details: unspecified |
Vitrification | Cryogen name: ETHANE |
-Electron microscopy imaging
Experimental equipment | Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM |
Electron lens | Mode: BRIGHT FIELD |
Image recording | Electron dose: 60 e/Å2 / Film or detector model: GATAN K2 SUMMIT (4k x 4k) |
-Processing
Software | Name: PHENIX / Version: 1.17.1_3660: / Classification: refinement | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||||||||||||||
Helical symmerty | Angular rotation/subunit: -0.6 ° / Axial rise/subunit: 4.8 Å / Axial symmetry: C2 | ||||||||||||||||||||||||
3D reconstruction | Resolution: 3.8 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 7549 / Symmetry type: HELICAL | ||||||||||||||||||||||||
Refine LS restraints |
|