- EMDB-52443: Overall map of the EC-DSIF-PAF-SPT6-RECQL5 complex -
+
データを開く
IDまたはキーワード:
読み込み中...
-
基本情報
登録情報
データベース: EMDB / ID: EMD-52443
タイトル
Overall map of the EC-DSIF-PAF-SPT6-RECQL5 complex
マップデータ
Locally filtered and sharpened overall map of ECstar-RECQL5
試料
複合体: Pol II-DSIF-PAF-SPT6-RECQL5 complex
タンパク質・ペプチド: x 21種
DNA: x 2種
RNA: x 1種
リガンド: x 2種
キーワード
transcription elongation / DNA helicase / transcription-coupled repair / RNA polymerase II / TRANSCRIPTION
機能・相同性
機能・相同性情報
mitotic DNA-templated DNA replication / blastocyst growth / Ski complex / RNA polymerase II C-terminal domain phosphoserine binding / mRNA decay by 3' to 5' exoribonuclease / Cdc73/Paf1 complex / chromosome separation / inner cell mass cell differentiation / positive regulation of mRNA 3'-end processing / regulation of isotype switching ...mitotic DNA-templated DNA replication / blastocyst growth / Ski complex / RNA polymerase II C-terminal domain phosphoserine binding / mRNA decay by 3' to 5' exoribonuclease / Cdc73/Paf1 complex / chromosome separation / inner cell mass cell differentiation / positive regulation of mRNA 3'-end processing / regulation of isotype switching / nuclear-transcribed mRNA catabolic process, 3'-5' exonucleolytic nonsense-mediated decay / negative regulation of DNA-templated transcription, elongation / regulation of muscle cell differentiation / endodermal cell fate commitment / negative regulation of myeloid cell differentiation / cellular response to camptothecin / positive regulation of cell cycle G1/S phase transition / DSIF complex / trophectodermal cell differentiation / four-way junction helicase activity / regulation of transcription elongation by RNA polymerase II / blastocyst hatching / replication-born double-strand break repair via sister chromatid exchange / nucleosome organization / Formation of RNA Pol II elongation complex / Formation of the Early Elongation Complex / Transcriptional regulation by small RNAs / RNA Polymerase II Pre-transcription Events / TP53 Regulates Transcription of DNA Repair Genes / FGFR2 alternative splicing / RNA polymerase II transcribes snRNA genes / mRNA Capping / mRNA Splicing - Minor Pathway / Processing of Capped Intron-Containing Pre-mRNA / RNA Polymerase II Promoter Escape / RNA Polymerase II Transcription Pre-Initiation And Promoter Opening / RNA Polymerase II Transcription Initiation / RNA Polymerase II Transcription Elongation / RNA Polymerase II Transcription Initiation And Promoter Clearance / RNA Pol II CTD phosphorylation and interaction with CE / Estrogen-dependent gene expression / Formation of TC-NER Pre-Incision Complex / Dual incision in TC-NER / Gap-filling DNA repair synthesis and ligation in TC-NER / mRNA Splicing - Major Pathway / blastocyst formation / mRNA 3'-end processing / nuclear lumen / positive regulation of DNA-templated transcription, elongation / Abortive elongation of HIV-1 transcript in the absence of Tat / transcription preinitiation complex / DNA 3'-5' helicase / DNA metabolic process / stem cell population maintenance / interleukin-6-mediated signaling pathway / 3'-5' DNA helicase activity / negative regulation of G1/S transition of mitotic cell cycle / negative regulation of gene expression, epigenetic / RNA Pol II CTD phosphorylation and interaction with CE during HIV infection / RNA Pol II CTD phosphorylation and interaction with CE / transcription elongation-coupled chromatin remodeling / Formation of the Early Elongation Complex / Formation of the HIV-1 Early Elongation Complex / mRNA Capping / RNA polymerase II complex binding / maintenance of transcriptional fidelity during transcription elongation by RNA polymerase II / Pausing and recovery of Tat-mediated HIV elongation / Tat-mediated HIV elongation arrest and recovery / negative regulation of transcription elongation by RNA polymerase II / positive regulation of macroautophagy / RNA polymerase II transcribes snRNA genes / HIV elongation arrest and recovery / Pausing and recovery of HIV elongation / protein localization to nucleus / positive regulation of Wnt signaling pathway / cell surface receptor signaling pathway via JAK-STAT / mRNA transport / Tat-mediated elongation of the HIV-1 transcript / negative regulation of double-strand break repair via homologous recombination / Formation of HIV-1 elongation complex containing HIV-1 Tat / RNA polymerase I complex / transcription elongation by RNA polymerase I / RNA polymerase III complex / negative regulation of fibroblast proliferation / Formation of HIV elongation complex in the absence of HIV Tat / RNA polymerase II, core complex / tRNA transcription by RNA polymerase III / transcription by RNA polymerase I / nucleosome binding / RNA Polymerase II Transcription Elongation / Formation of RNA Pol II elongation complex / transcription-coupled nucleotide-excision repair / RNA Polymerase II Pre-transcription Events / rescue of stalled ribosome / SH2 domain binding / DNA-directed RNA polymerase complex / DNA helicase activity / RNA splicing / replication fork / transcription elongation factor complex 類似検索 - 分子機能
DNA-directed RNA polymerase subunit beta / DNA-directed RNA polymerases I, II, and III subunit RPABC4 / DNA-directed RNA polymerases I, II, and III subunit RPABC2 / DNA-directed RNA polymerase subunit / DNA-directed RNA polymerase II subunit RPB4 / DNA-directed RNA polymerases I, II, and III subunit RPABC5 / DNA-directed RNA polymerase subunit / DNA-directed RNA polymerase II subunit RPB11-a / DNA-directed RNA polymerases I, II, and III subunit RPABC3 / DNA-directed RNA polymerase II subunit RPB3 ...DNA-directed RNA polymerase subunit beta / DNA-directed RNA polymerases I, II, and III subunit RPABC4 / DNA-directed RNA polymerases I, II, and III subunit RPABC2 / DNA-directed RNA polymerase subunit / DNA-directed RNA polymerase II subunit RPB4 / DNA-directed RNA polymerases I, II, and III subunit RPABC5 / DNA-directed RNA polymerase subunit / DNA-directed RNA polymerase II subunit RPB11-a / DNA-directed RNA polymerases I, II, and III subunit RPABC3 / DNA-directed RNA polymerase II subunit RPB3 / DNA-directed RNA polymerases I, II, and III subunit RPABC1 / Transcription elongation factor SPT5 / ATP-dependent DNA helicase Q5 / DNA-directed RNA polymerase II subunit RPB9 / Transcription elongation factor SPT4 / Parafibromin / RNA polymerase-associated protein CTR9 homolog / Transcription elongation factor SPT6 / RNA polymerase II-associated factor 1 homolog / RNA polymerase-associated protein LEO1 / Superkiller complex protein 8 類似検索 - 構成要素
生物種
Homo sapiens (ヒト) / Sus scrofa domesticus (ブタ) / synthetic construct (人工物)
ジャーナル: Nat Struct Mol Biol / 年: 2025 タイトル: Structural basis of RECQL5-induced RNA polymerase II transcription braking and subsequent reactivation. 著者: Luojia Zhang / Yuliya Gordiyenko / Tomos Morgan / Catarina Franco / Ana Tufegdžić Vidaković / Suyang Zhang / 要旨: Abnormally fast transcription elongation can lead to detrimental consequences such as transcription-replication collisions, altered alternative splicing patterns and genome instability. Therefore, ...Abnormally fast transcription elongation can lead to detrimental consequences such as transcription-replication collisions, altered alternative splicing patterns and genome instability. Therefore, elongating RNA polymerase II (Pol II) requires mechanisms to slow its progression, yet the molecular basis of transcription braking remains unclear. RECQL5 is a DNA helicase that functions as a general elongation factor by slowing down Pol II. Here we report cryo-electron microscopy structures of human RECQL5 bound to multiple transcription elongation complexes. Combined with biochemical analysis, we identify an α-helix of RECQL5 responsible for binding Pol II and slowdown of transcription elongation. We further reveal that the transcription-coupled DNA repair (TCR) complex allows Pol II to overcome RECQL5-induced transcription braking through concerted actions of its translocase activity and competition with RECQL5 for engaging Pol II. Additionally, RECQL5 inhibits TCR-mediated Pol II ubiquitination to prevent activation of the DNA repair pathway. Our results suggest a model in which RECQL5 and the TCR complex coordinately regulate transcription elongation rates to ensure transcription efficiency while maintaining genome stability.