[English] 日本語

- EMDB-43783: Rat GluN1-GluN2B NMDA receptor channel in complex with glutamate -
+
Open data
-
Basic information
Entry | ![]() | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Rat GluN1-GluN2B NMDA receptor channel in complex with glutamate | |||||||||
![]() | The B-factor sharpened map. | |||||||||
![]() |
| |||||||||
![]() | Ligand-gated ion channel / ionotropic glutamate receptor / synaptic membrane protein / MEMBRANE PROTEIN | |||||||||
Function / homology | ![]() neurotransmitter receptor activity involved in regulation of postsynaptic membrane potential / cellular response to curcumin / cellular response to corticosterone stimulus / cellular response to magnesium starvation / sensory organ development / regulation of protein kinase A signaling / pons maturation / positive regulation of Schwann cell migration / regulation of cell communication / sensitization ...neurotransmitter receptor activity involved in regulation of postsynaptic membrane potential / cellular response to curcumin / cellular response to corticosterone stimulus / cellular response to magnesium starvation / sensory organ development / regulation of protein kinase A signaling / pons maturation / positive regulation of Schwann cell migration / regulation of cell communication / sensitization / EPHB-mediated forward signaling / auditory behavior / Assembly and cell surface presentation of NMDA receptors / olfactory learning / conditioned taste aversion / response to hydrogen sulfide / dendritic branch / regulation of respiratory gaseous exchange / positive regulation of inhibitory postsynaptic potential / response to other organism / protein localization to postsynaptic membrane / apical dendrite / regulation of ARF protein signal transduction / fear response / response to methylmercury / response to glycine / propylene metabolic process / response to carbohydrate / interleukin-1 receptor binding / cellular response to dsRNA / negative regulation of dendritic spine maintenance / positive regulation of glutamate secretion / cellular response to lipid / voltage-gated monoatomic cation channel activity / response to growth hormone / Synaptic adhesion-like molecules / regulation of monoatomic cation transmembrane transport / NMDA glutamate receptor activity / RAF/MAP kinase cascade / response to manganese ion / transmitter-gated monoatomic ion channel activity / NMDA selective glutamate receptor complex / ligand-gated sodium channel activity / response to morphine / calcium ion transmembrane import into cytosol / glutamate binding / regulation of axonogenesis / neuromuscular process / protein heterotetramerization / male mating behavior / regulation of dendrite morphogenesis / regulation of synapse assembly / heterocyclic compound binding / glycine binding / positive regulation of reactive oxygen species biosynthetic process / positive regulation of calcium ion transport into cytosol / parallel fiber to Purkinje cell synapse / receptor clustering / suckling behavior / response to amine / startle response / small molecule binding / social behavior / associative learning / behavioral response to pain / response to magnesium ion / monoatomic cation transmembrane transport / regulation of neuronal synaptic plasticity / regulation of MAPK cascade / monoatomic cation transport / cellular response to glycine / extracellularly glutamate-gated ion channel activity / : / positive regulation of excitatory postsynaptic potential / excitatory synapse / ligand-gated monoatomic ion channel activity / action potential / regulation of postsynaptic membrane potential / positive regulation of dendritic spine maintenance / Unblocking of NMDA receptors, glutamate binding and activation / long-term memory / cellular response to manganese ion / behavioral fear response / postsynaptic density, intracellular component / glutamate receptor binding / phosphatase binding / neuron development / multicellular organismal response to stress / synaptic cleft / prepulse inhibition / monoatomic cation channel activity / detection of mechanical stimulus involved in sensory perception of pain / response to electrical stimulus / response to mechanical stimulus / calcium ion homeostasis / glutamate-gated receptor activity / response to fungicide / D2 dopamine receptor binding / cell adhesion molecule binding / presynaptic active zone membrane Similarity search - Function | |||||||||
Biological species | ![]() ![]() | |||||||||
Method | single particle reconstruction / cryo EM / Resolution: 3.9 Å | |||||||||
![]() | Chou T-H / Furukawa H | |||||||||
Funding support | ![]()
| |||||||||
![]() | ![]() Title: Molecular mechanism of ligand gating and opening of NMDA receptor. Authors: Tsung-Han Chou / Max Epstein / Russell G Fritzemeier / Nicholas S Akins / Srinu Paladugu / Elijah Z Ullman / Dennis C Liotta / Stephen F Traynelis / Hiro Furukawa / ![]() Abstract: Glutamate transmission and activation of ionotropic glutamate receptors are the fundamental means by which neurons control their excitability and neuroplasticity. The N-methyl-D-aspartate receptor ...Glutamate transmission and activation of ionotropic glutamate receptors are the fundamental means by which neurons control their excitability and neuroplasticity. The N-methyl-D-aspartate receptor (NMDAR) is unique among all ligand-gated channels, requiring two ligands-glutamate and glycine-for activation. These receptors function as heterotetrameric ion channels, with the channel opening dependent on the simultaneous binding of glycine and glutamate to the extracellular ligand-binding domains (LBDs) of the GluN1 and GluN2 subunits, respectively. The exact molecular mechanism for channel gating by the two ligands has been unclear, particularly without structures representing the open channel and apo states. Here we show that the channel gate opening requires tension in the linker connecting the LBD and transmembrane domain (TMD) and rotation of the extracellular domain relative to the TMD. Using electron cryomicroscopy, we captured the structure of the GluN1-GluN2B (GluN1-2B) NMDAR in its open state bound to a positive allosteric modulator. This process rotates and bends the pore-forming helices in GluN1 and GluN2B, altering the symmetry of the TMD channel from pseudofourfold to twofold. Structures of GluN1-2B NMDAR in apo and single-liganded states showed that binding of either glycine or glutamate alone leads to distinct GluN1-2B dimer arrangements but insufficient tension in the LBD-TMD linker for channel opening. This mechanistic framework identifies a key determinant for channel gating and a potential pharmacological strategy for modulating NMDAR activity. | |||||||||
History |
|
-
Structure visualization
Supplemental images |
---|
-
Downloads & links
-EMDB archive
Map data | ![]() | 117.8 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 18.3 KB 18.3 KB | Display Display | ![]() |
Images | ![]() | 63 KB | ||
Filedesc metadata | ![]() | 6.9 KB | ||
Others | ![]() ![]() | 115.7 MB 115.7 MB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Validation report
Summary document | ![]() | 865.6 KB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 865.1 KB | Display | |
Data in XML | ![]() | 13.8 KB | Display | |
Data in CIF | ![]() | 16.4 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 9ariMC ![]() 9areC ![]() 9arfC ![]() 9argC ![]() 9arhC ![]() 9bibC M: atomic model generated by this map C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
EMDB pages | ![]() ![]() |
---|---|
Related items in Molecule of the Month |
-
Map
File | ![]() | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | The B-factor sharpened map. | ||||||||||||||||||||||||||||||||||||
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 1.07 Å | ||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-Half map: Map A of the two half maps.
File | emd_43783_half_map_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | Map A of the two half maps. | ||||||||||||
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: Map B of the two half maps.
File | emd_43783_half_map_2.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | Map B of the two half maps. | ||||||||||||
Projections & Slices |
| ||||||||||||
Density Histograms |
-
Sample components
-Entire : Di-heterotetrameric GluN1-GluN2B NMDA receptors
Entire | Name: Di-heterotetrameric GluN1-GluN2B NMDA receptors |
---|---|
Components |
|
-Supramolecule #1: Di-heterotetrameric GluN1-GluN2B NMDA receptors
Supramolecule | Name: Di-heterotetrameric GluN1-GluN2B NMDA receptors / type: complex / ID: 1 / Parent: 0 / Macromolecule list: #1-#2 |
---|---|
Source (natural) | Organism: ![]() ![]() |
Molecular weight | Theoretical: 400 KDa |
-Macromolecule #1: Isoform B of Glutamate receptor ionotropic, NMDA 1
Macromolecule | Name: Isoform B of Glutamate receptor ionotropic, NMDA 1 / type: protein_or_peptide / ID: 1 / Number of copies: 2 / Enantiomer: LEVO |
---|---|
Source (natural) | Organism: ![]() ![]() |
Molecular weight | Theoretical: 108.085633 KDa |
Recombinant expression | Organism: ![]() ![]() |
Sequence | String: MSTMHLLTFA LLFSCSFARA ASDPKIVNIG AVLSTRKHEQ MFREAVNQAN KRHGSWKIQL QATSVTHKPN AIQMALSVCE DLISSQVYA ILVSHPPTPN DHFTPTPVSY TAGFYRIPVL GLTTRMSIYS DKSIHLSFLR TVPPYSHQSS VWFEMMRVYN W NHIILLVS ...String: MSTMHLLTFA LLFSCSFARA ASDPKIVNIG AVLSTRKHEQ MFREAVNQAN KRHGSWKIQL QATSVTHKPN AIQMALSVCE DLISSQVYA ILVSHPPTPN DHFTPTPVSY TAGFYRIPVL GLTTRMSIYS DKSIHLSFLR TVPPYSHQSS VWFEMMRVYN W NHIILLVS DDHEGRAAQK RLETLLEERE SKSKKRNYEN LDQLSYDNKR GPKAEKVLQF DPGTKNVTAL LMEARELEAR VI ILSASED DAATVYRAAA MLDMTGSGYV WLVGEREISG NALRYAPDGI IGLQLINGKN ESAHISDAVG VVAQAVHELL EKE NITDPP RGCVGNTNIW KTGPLFKRVL MSSKYADGVT GRVEFNEDGD RKFAQYSIMN LQNRKLVQVG IYNGTHVIPN DRKI IWPGG ETEKPRGYQM STRLKIVTIH QEPFVYVKPT MSDGTCKEEF TVNGDPVKKV ICTGPNDTSP GSPRHTVPQC CYGFC IDLL IKLARTMQFT YEVHLVADGK FGTQERVQNS NKKEWNGMMG ELLSGQADMI VAPLTINNER AQYIEFSKPF KYQGLT ILV KKEIPRSTLD SFMQPFQSTL WLLVGLSVHV VAVMLYLLDR FSPFGRFKVN SQSESTDALT LSSAMWFSWG VLLNSGI GE GAPRSFSARI LGMVWAGFAM IIVASYTANL AAFLVLDRPE ERITGINDPR LRNPSDKFIY ATVKQSSVDI YFRRQVEL S TMYRHMEKHN YESAAEAIQA VRDNKLHAFI WDSAVLEFEA SQKCDLVTTG ELFFRSGFGI GMRKDSPWKQ QVSLSILKS HENGFMEDLD KTWVRYQECD SRSNAPATLT CENMAGVFML VAGGIVAGIF LIFIEIAYKR HKDARRKQMQ LAFAAVNVWR KNLQDRKSG RAEPDPKKKA TFRAITSTLA SSFKRRRSSK DTSTGGGRGA LQNQKDTVLP RRAIEREEGQ LQLCSRHRES UniProtKB: Glutamate receptor ionotropic, NMDA 1 |
-Macromolecule #2: Glutamate receptor ionotropic, NMDA 2B
Macromolecule | Name: Glutamate receptor ionotropic, NMDA 2B / type: protein_or_peptide / ID: 2 / Number of copies: 2 / Enantiomer: LEVO |
---|---|
Source (natural) | Organism: ![]() ![]() |
Molecular weight | Theoretical: 98.845859 KDa |
Recombinant expression | Organism: ![]() ![]() |
Sequence | String: MGTMRLFLLA VLFLFSFARA TGWSHPQFEK GGGSGGGSGG SAWSHPQFEK GALVPRGRSQ KSPPSIGIAV ILVGTSDEVA IKDAHEKDD FHHLSVVPRV ELVAMNETDP KSIITRICDL MSDRKIQGVV FADDTDQEAI AQILDFISAQ TLTPILGIHG G SSMIMADK ...String: MGTMRLFLLA VLFLFSFARA TGWSHPQFEK GGGSGGGSGG SAWSHPQFEK GALVPRGRSQ KSPPSIGIAV ILVGTSDEVA IKDAHEKDD FHHLSVVPRV ELVAMNETDP KSIITRICDL MSDRKIQGVV FADDTDQEAI AQILDFISAQ TLTPILGIHG G SSMIMADK DESSMFFQFG PSIEQQASVM LNIMEEYDWY IFSIVTTYFP GYQDFVNKIR STIENSFVGW ELEEVLLLDM SL DDGDSKI QNQLKKLQSP IILLYCTKEE ATYIFEVANS VGLTGYGYTW IVPSLVAGDT DTVPSEFPTG LISVSYDEWD YGL PARVRD GIAIITTAAS DMLSEHSFIP EPKSSCYNTH EKRIYQSNML NRYLINVTFE GRDLSFSEDG YQMHPKLVII LLNK ERKWE RVGKWKDKSL QMKYYVWPRM CPETEEQEDD HLSIVTLEEA PFVIVESVDP LSGTCMRNTV PCQKRIISEN KTDEE PGYI KKCCKGFCID ILKKISKSVK FTYDLYLVTN GKHGKKINGT WNGMIGEVVM KRAYMAVGSL TINEERSEVV DFSVPF IET GISVMVSRSN GTVSPSAFLE PFSACVWVMM FVMLLIVSAV AVFVFEYFSP VGYNRSLADG REPGGPSFTI GKAIWLL WG LVFNNSVPVQ NPKGTTSKIM VSVWAFFAVI FLASYTANLA AFMIQEEYVD QVSGLSDKKF QRPNDFSPPF RFGTVPNG S TERNIRNNYA EMHAYMGKFN QRGVDDALLS LKTGKLDAFI YDAAVLNYMA GRDEGCKLVT IGSGKVFAST GYGIAIQKD SGWKRQVDLA ILQLFGDGEM EELEALWLTG ICHNEKNEVM SSQLDIDNMA GVFYMLGAAM ALSLITFISE HLFYWQFRHS FMG UniProtKB: Glutamate receptor ionotropic, NMDA 2B |
-Macromolecule #3: GLUTAMIC ACID
Macromolecule | Name: GLUTAMIC ACID / type: ligand / ID: 3 / Number of copies: 2 / Formula: GLU |
---|---|
Molecular weight | Theoretical: 147.129 Da |
Chemical component information | ![]() ChemComp-GLU: |
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | particle |
-
Sample preparation
Concentration | 4 mg/mL |
---|---|
Buffer | pH: 7.5 |
Vitrification | Cryogen name: ETHANE / Chamber humidity: 85 % / Chamber temperature: 285 K / Instrument: FEI VITROBOT MARK IV |
-
Electron microscopy
Microscope | FEI TITAN KRIOS |
---|---|
Image recording | Film or detector model: GATAN K2 SUMMIT (4k x 4k) / Average electron dose: 58.8 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: ![]() |
Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Nominal defocus max: 2.8000000000000003 µm / Nominal defocus min: 1.6 µm |
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
-
Image processing
Startup model | Type of model: NONE |
---|---|
Final reconstruction | Resolution.type: BY AUTHOR / Resolution: 3.9 Å / Resolution method: FSC 0.143 CUT-OFF / Software - Name: cryoSPARC / Number images used: 230178 |
Initial angle assignment | Type: MAXIMUM LIKELIHOOD / Software - Name: cryoSPARC |
Final angle assignment | Type: MAXIMUM LIKELIHOOD / Software - Name: cryoSPARC |