ジャーナル: Proc Natl Acad Sci U S A / 年: 2021 タイトル: Cryo-EM structure and kinetics reveal electron transfer by 2D diffusion of cytochrome in the yeast III-IV respiratory supercomplex. 著者: Agnes Moe / Justin Di Trani / John L Rubinstein / Peter Brzezinski / 要旨: Energy conversion in aerobic organisms involves an electron current from low-potential donors, such as NADH and succinate, to dioxygen through the membrane-bound respiratory chain. Electron transfer ...Energy conversion in aerobic organisms involves an electron current from low-potential donors, such as NADH and succinate, to dioxygen through the membrane-bound respiratory chain. Electron transfer is coupled to transmembrane proton transport, which maintains the electrochemical proton gradient used to produce ATP and drive other cellular processes. Electrons are transferred from respiratory complexes III to IV (CIII and CIV) by water-soluble cytochrome (cyt.) In and some other organisms, these complexes assemble into larger CIIICIV supercomplexes, the functional significance of which has remained enigmatic. In this work, we measured the kinetics of the supercomplex cyt. -mediated QH:O oxidoreductase activity under various conditions. The data indicate that the electronic link between CIII and CIV is confined to the surface of the supercomplex. Single-particle electron cryomicroscopy (cryo-EM) structures of the supercomplex with cyt. show the positively charged cyt. bound to either CIII or CIV or along a continuum of intermediate positions. Collectively, the structural and kinetic data indicate that cyt. travels along a negatively charged patch on the supercomplex surface. Thus, rather than enhancing electron transfer rates by decreasing the distance that cyt. must diffuse in three dimensions, formation of the CIIICIV supercomplex facilitates electron transfer by two-dimensional (2D) diffusion of cyt. This mechanism enables the CIIICIV supercomplex to increase QH:O oxidoreductase activity and suggests a possible regulatory role for supercomplex formation in the respiratory chain.