[English] 日本語
Yorodumi
- EMDB-22681: SARS-COV-2 nsp1 in complex with human 40S ribosome -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-22681
TitleSARS-COV-2 nsp1 in complex with human 40S ribosome
Map data
Samplecomplex of SARS-CoV-2 Nsp1 and human 40S ribosome
  • human 40S ribosome
  • SARS-CoV-2 Nsp1
  • (40S ribosomal protein ...) x 32
  • nucleic-acidNucleic acid
  • Receptor of activated protein C kinase 1
  • 60S ribosomal protein L41
  • SARS-COV-2 Nsp1
  • (ligand) x 2
Function / homology
Function and homology information


positive regulation of base-excision repair / positive regulation of DNA N-glycosylase activity / response to TNF agonist / oxidized pyrimidine DNA binding / negative regulation of DNA repair / positive regulation of cysteine-type endopeptidase activity involved in execution phase of apoptosis / positive regulation of respiratory burst involved in inflammatory response / nucleolus organization / protein tyrosine kinase inhibitor activity / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage ...positive regulation of base-excision repair / positive regulation of DNA N-glycosylase activity / response to TNF agonist / oxidized pyrimidine DNA binding / negative regulation of DNA repair / positive regulation of cysteine-type endopeptidase activity involved in execution phase of apoptosis / positive regulation of respiratory burst involved in inflammatory response / nucleolus organization / protein tyrosine kinase inhibitor activity / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage / positive regulation of gastrulation / NF-kappaB complex / positive regulation of Golgi to plasma membrane protein transport / response to extracellular stimulus / IRE1-RACK1-PP2A complex / negative regulation of RNA splicing / ubiquitin ligase inhibitor activity / laminin receptor activity / cytoplasmic side of rough endoplasmic reticulum membrane / positive regulation of endodeoxyribonuclease activity / regulation of cell division / oxidized purine DNA binding / negative regulation of endoplasmic reticulum unfolded protein response / supercoiled DNA binding / negative regulation of hydrogen peroxide-induced neuron death / protein kinase A binding / negative regulation of ubiquitin protein ligase activity / positive regulation of ceramide biosynthetic process / signaling adaptor activity / erythrocyte homeostasis / negative regulation of phagocytosis / ubiquitin-like protein conjugating enzyme binding / regulation of establishment of cell polarity / negative regulation of Wnt signaling pathway / pigmentation / cysteine-type endopeptidase activator activity involved in apoptotic process / positive regulation of T cell receptor signaling pathway / positive regulation of mitochondrial depolarization / phagocytic cup / translation regulator activity / endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / ion channel inhibitor activity / positive regulation of activated T cell proliferation / rescue of stalled ribosome / positive regulation of cellular component movement / iron-sulfur cluster binding / fibroblast growth factor binding / stress granule assembly / positive regulation of apoptotic signaling pathway / poly(U) RNA binding / positive regulation of intrinsic apoptotic signaling pathway by p53 class mediator / DNA-(apurinic or apyrimidinic site) lyase / monocyte chemotaxis / class I DNA-(apurinic or apyrimidinic site) endonuclease activity / positive regulation of ubiquitin-protein transferase activity / BH3 domain binding / positive regulation of cyclic-nucleotide phosphodiesterase activity / endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / spindle assembly / positive regulation of JUN kinase activity / TOR signaling / negative regulation of protein kinase B signaling / regulation of tumor necrosis factor-mediated signaling pathway / positive regulation of interleukin-2 production / ribosomal small subunit export from nucleus / SRP-dependent cotranslational protein targeting to membrane / maturation of SSU-rRNA / negative regulation of ubiquitin-dependent protein catabolic process / regulation of translational fidelity / gastrulation / small-subunit processome / negative regulation of respiratory burst involved in inflammatory response / positive regulation of microtubule polymerization / nuclear-transcribed mRNA catabolic process, nonsense-mediated decay / polysome / viral transcription / translation initiation factor binding / ribosomal small subunit biogenesis / molecular adaptor activity / induction by virus of catabolism of host mRNA / positive regulation of DNA repair / Hsp70 protein binding / erythrocyte differentiation / suppression by virus of host ISG15 activity / laminin binding / SARS coronavirus main proteinase / host cell endoplasmic reticulum-Golgi intermediate compartment / positive regulation of cell cycle / exonuclease activity / suppression by virus of host NF-kappaB transcription factor activity / tubulin binding / omega peptidase activity / translational initiation / innate immune response in mucosa / Hydrolases; Acting on ester bonds; Exoribonucleases producing 5'-phosphomonoesters / negative regulation of peptidyl-serine phosphorylation / positive regulation of intrinsic apoptotic signaling pathway / negative regulation of protein ubiquitination / endodeoxyribonuclease activity / modulation by virus of host protein ubiquitination
Ribosomal protein S30 / Ribosomal protein S2, conserved site / Ribosomal protein S21e, conserved site / Ribosomal protein S19e, conserved site / Ribosomal protein S17e, conserved site / Ribosomal protein S14, conserved site / Ribosomal protein S5, C-terminal / Ribosomal protein S13, conserved site / Ribosomal protein S10, conserved site / Ribosomal protein S4e, N-terminal, conserved site ...Ribosomal protein S30 / Ribosomal protein S2, conserved site / Ribosomal protein S21e, conserved site / Ribosomal protein S19e, conserved site / Ribosomal protein S17e, conserved site / Ribosomal protein S14, conserved site / Ribosomal protein S5, C-terminal / Ribosomal protein S13, conserved site / Ribosomal protein S10, conserved site / Ribosomal protein S4e, N-terminal, conserved site / Ribosomal protein S5, N-terminal, conserved site / Ribosomal S11, conserved site / Ribosomal protein L41 / Ribosomal S24e conserved site / Ribosomal protein S4, conserved site / WD40-repeat-containing domain / K homology domain-like, alpha/beta / WD40/YVTN repeat-like-containing domain superfamily / Non-structural protein NSP8, coronavirus-like / Non-structural protein NSP7, coronavirus / Non-structural protein NSP9, coronavirus / Ribosomal protein L2, domain 2 / Ribosomal protein S25 / Plectin/S10, N-terminal / Ribosomal protein S3, conserved site / Ribosomal protein S6, eukaryotic / Ribosomal protein S5 domain 2-type fold / Ribosomal protein S19, superfamily / Ribosomal protein S15P / Ribosomal protein S4/S9 / DPUP/SUD, C-terminal, betacoronavirus / Ribosomal protein S8e/ribosomal biogenesis NSA2 / Non-structural protein NSP1, betacoronavirus / Ribosomal protein S19 conserved site / Ribosomal protein S7, conserved site / Ribosomal protein S9, conserved site / G-protein beta WD-40 repeat / Ribosomal protein S3Ae, conserved site / Ribosomal protein S17, conserved site / Ubiquitin domain / Ribosomal protein S2, eukaryotic/archaeal / Ubiquitin conserved site / WD40 repeat, conserved site / RNA synthesis protein NSP10, coronavirus / Ribosomal protein S8e, conserved site / Ribosomal protein S3, eukaryotic/archaeal / Ribosomal protein S27a / Ribosomal protein S6e, conserved site / Ribosomal protein S5 domain 2-type fold, subgroup / Ribosomal protein S4e, central region / Ribosomal protein S7 domain / Ribosomal protein S3, C-terminal / Ribosomal protein S8 / Ribosomal protein S9 / Ribosomal protein S5 / Ribosomal protein S4e / Ribosomal protein S26e / Ribosomal protein S8e / Ribosomal protein S14 / Ribosomal protein S17e / Ribosomal protein S19e / Ribosomal protein S6e / Ribosomal protein S27e / Ribosomal protein S3Ae / WD40 repeat / Ribosomal protein S10 / Ribosomal protein S2 / Ribosomal protein S13 / Ribosomal protein S4/S9, N-terminal / Ribosomal protein S21e / Ribosomal protein S11 / Ribosomal protein S24e / Ribosomal protein S19/S15 / Ubiquitin-like domain / Ribosomal protein S15 / Ribosomal protein S4e, N-terminal / Ribosomal protein L7Ae/L30e/S12e/Gadd45 / Ribosomal protein S5, N-terminal / Peptidase C16, coronavirus / Ribosomal protein L23/L15e core domain superfamily / Ribosomal protein S13/S15, N-terminal / Nucleic acid-binding, OB-fold / Zinc-binding ribosomal protein / K Homology domain, type 2 / Ribosomal protein S13-like, H2TH / RNA polymerase, N-terminal, coronaviral / Non-structural protein NSP14, coronavirus / Ribosomal protein S7e / RNA-binding S4 domain / Non-structural protein NSP16, coronavirus-like / S15/NS1, RNA-binding / K homology domain superfamily, prokaryotic type / Peptidase S1, PA clan / Peptidase C30, coronavirus / Ribosomal protein S5/S7 / Ribosomal protein S17/S11 / Ribosomal protein S28e / Ribosomal protein S12e / Ribosomal protein S2, flavodoxin-like domain superfamily / Ribosomal protein S23, eukaryotic/archaeal
40S ribosomal protein S15 / 40S ribosomal protein S29 / 40S ribosomal protein S13 / 40S ribosomal protein S11 / 40S ribosomal protein S4, X isoform / 40S ribosomal protein S6 / 60S ribosomal protein L41 / 40S ribosomal protein S24 / 40S ribosomal protein S25 / 40S ribosomal protein S26 ...40S ribosomal protein S15 / 40S ribosomal protein S29 / 40S ribosomal protein S13 / 40S ribosomal protein S11 / 40S ribosomal protein S4, X isoform / 40S ribosomal protein S6 / 60S ribosomal protein L41 / 40S ribosomal protein S24 / 40S ribosomal protein S25 / 40S ribosomal protein S26 / 40S ribosomal protein S28 / 40S ribosomal protein S30 / 40S ribosomal protein S23 / 40S ribosomal protein S21 / Receptor of activated protein C kinase 1 / 40S ribosomal protein S18 / 40S ribosomal protein S3a / 40S ribosomal protein S14 / 40S ribosomal protein S19 / 40S ribosomal protein S17 / 40S ribosomal protein SA / Replicase polyprotein 1ab / 40S ribosomal protein S2 / 40S ribosomal protein S3 / 40S ribosomal protein S12 / 40S ribosomal protein S27 / 40S ribosomal protein S16 / 40S ribosomal protein S9 / 40S ribosomal protein S5 / 40S ribosomal protein S10 / 40S ribosomal protein S20 / 40S ribosomal protein S7 / 40S ribosomal protein S8 / 40S ribosomal protein S15a / 40S ribosomal protein S27a
Biological speciesHomo sapiens (human) / Severe acute respiratory syndrome coronavirus 2 / Human (human) / 2019-nCoV (virus)
Methodsingle particle reconstruction / cryo EM / Resolution: 2.9 Å
AuthorsWang L / Shi M / Wu H
CitationJournal: bioRxiv : the preprint server for biology / Year: 2020
Title: SARS-CoV-2 Nsp1 suppresses host but not viral translation through a bipartite mechanism.
Abstract: The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a highly contagious virus that underlies the current COVID-19 pandemic. SARS-CoV-2 is thought to disable various features of host ...The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a highly contagious virus that underlies the current COVID-19 pandemic. SARS-CoV-2 is thought to disable various features of host immunity and cellular defense. The SARS-CoV-2 nonstructural protein 1 (Nsp1) is known to inhibit host protein translation and could be a target for antiviral therapy against COVID-19. However, how SARS-CoV-2 circumvents this translational blockage for the production of its own proteins is an open question. Here, we report a bipartite mechanism of SARS-CoV-2 Nsp1 which operates by: (1) hijacking the host ribosome via direct interaction of its C-terminal domain (CT) with the 40S ribosomal subunit and (2) specifically lifting this inhibition for SARS-CoV-2 via a direct interaction of its N-terminal domain (NT) with the 5' untranslated region (5' UTR) of SARS-CoV-2 mRNA. We show that while Nsp1-CT is sufficient for binding to 40S and inhibition of host protein translation, the 5' UTR of SARS-CoV-2 mRNA removes this inhibition by binding to Nsp1-NT, suggesting that the Nsp1-NT-UTR interaction is incompatible with the Nsp1-CT-40S interaction. Indeed, lengthening the linker between Nsp1-NT and Nsp1-CT of Nsp1 progressively reduced the ability of SARS-CoV-2 5' UTR to escape the translational inhibition, supporting that the incompatibility is likely steric in nature. The short SL1 region of the 5' UTR is required for viral mRNA translation in the presence of Nsp1. Thus, our data provide a comprehensive view on how Nsp1 switches infected cells from host mRNA translation to SARS-CoV-2 mRNA translation, and that Nsp1 and 5' UTR may be targeted for anti-COVID-19 therapeutics.
Validation ReportPDB-ID: 7k5i

SummaryFull reportAbout validation report
History
DepositionSep 16, 2020-
Header (metadata) releaseOct 14, 2020-
Map releaseOct 14, 2020-
UpdateOct 14, 2020-
Current statusOct 14, 2020Processing site: RCSB / Status: Released

-
Structure visualization

Movie
  • Surface view with section colored by density value
  • Surface level: 0.7
  • Imaged by UCSF Chimera
  • Download
  • Surface view colored by height
  • Surface level: 0.7
  • Imaged by UCSF Chimera
  • Download
  • Surface view with fitted model
  • Atomic models: PDB-7k5i
  • Surface level: 0.7
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerEM map:
SurfViewMolmilJmol/JSmol
Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_22681.map.gz / Format: CCP4 / Size: 178 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
Projections & slices

Image control

Size
Brightness
Contrast
Others
AxesZ (Sec.)Y (Row.)X (Col.)
1.08 Å/pix.
x 360 pix.
= 388.8 Å
1.08 Å/pix.
x 360 pix.
= 388.8 Å
1.08 Å/pix.
x 360 pix.
= 388.8 Å

Surface

Projections

Slices (1/3)

Slices (1/2)

Slices (2/3)

Images are generated by Spider.

Voxel sizeX=Y=Z: 1.08 Å
Density
Contour LevelBy AUTHOR: 0.54 / Movie #1: 0.7
Minimum - Maximum-5.5307665 - 9.45867
Average (Standard dev.)0.008882 (±0.19878508)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions360360360
Spacing360360360
CellA=B=C: 388.80002 Å
α=β=γ: 90.0 °

CCP4 map header:

modeImage stored as Reals
Å/pix. X/Y/Z1.081.081.08
M x/y/z360360360
origin x/y/z0.0000.0000.000
length x/y/z388.800388.800388.800
α/β/γ90.00090.00090.000
start NX/NY/NZ-19-94-60
NX/NY/NZ114128118
MAP C/R/S123
start NC/NR/NS000
NC/NR/NS360360360
D min/max/mean-5.5319.4590.009

-
Supplemental data

-
Sample components

+
Entire complex of SARS-CoV-2 Nsp1 and human 40S ribosome

EntireName: complex of SARS-CoV-2 Nsp1 and human 40S ribosome / Number of components: 41

+
Component #1: protein, complex of SARS-CoV-2 Nsp1 and human 40S ribosome

ProteinName: complex of SARS-CoV-2 Nsp1 and human 40S ribosome / Recombinant expression: No

+
Component #2: protein, human 40S ribosome

ProteinName: human 40S ribosome / Recombinant expression: No
SourceSpecies: Homo sapiens (human)

+
Component #3: protein, SARS-CoV-2 Nsp1

ProteinName: SARS-CoV-2 Nsp1 / Recombinant expression: No
SourceSpecies: Severe acute respiratory syndrome coronavirus 2

+
Component #4: protein, 40S ribosomal protein S17

ProteinName: 40S ribosomal protein S17 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 15.578156 kDa
SourceSpecies: Human (human)

+
Component #5: nucleic-acid, 40S ribosomal rRNA18S

nucleic acidName: 40S ribosomal rRNA18S / Class: RNA / Structure: OTHER / Synthetic: No
Sequence: UACCUGGUUG AUCCUGCCAG UAGCAUAUGC UUGUCUCAAA GAUUAAGCCA UGCAUGUCUA AGUACGCACG GCCGGUACAG UGAAACUGCG AAUGGCUCAU UAAAUCAGUU AUGGUUCCUU UGGUCGCUCG CUCCUCUCCU ACUUGGAUAA CUGUGGUAAU UCUAGAGCUA ...Sequence:
UACCUGGUUG AUCCUGCCAG UAGCAUAUGC UUGUCUCAAA GAUUAAGCCA UGCAUGUCUA AGUACGCACG GCCGGUACAG UGAAACUGCG AAUGGCUCAU UAAAUCAGUU AUGGUUCCUU UGGUCGCUCG CUCCUCUCCU ACUUGGAUAA CUGUGGUAAU UCUAGAGCUA AUACAUGCCG ACGGGCGCUG ACCCCCUUCG CGGGGGGGAU GCGUGCAUUU AUCAGAUCAA AACCAACCCG GUCAGCCCCU CUCCGGCCCC GGCCGGGGGG CGGGCCGCGG CGGCUUUGGU GACUCUAGAU AACCUCGGGC CGAUCGCACG CCCCCCGUGG CGGCGACGAC CCAUUCGAAC GUCUGCCCUA UCAACUUUCG AUGGUAGUCG CCGUGCCUAC CAUGGUGACC ACGGGUGACG GGGAAUCAGG GUUCGAUUCC GGAGAGGGAG CCUGAGAAAC GGCUACCACA UCCAAGGAAG GCAGCAGGCG CGCAAAUUAC CCACUCCCGA CCCGGGGAGG UAGUGACGAA AAAUAACAAU ACAGGACUCU UUCGAGGCCC UGUAAUUGGA AUGAGUCCAC UUUAAAUCCU UUAACGAGGA UCCAUUGGAG GGCAAGUCUG GUGCCAGCAG CCGCGGUAAU UCCAGCUCCA AUAGCGUAUA UUAAAGUUGC UGCAGUUAAA AAGCUCGUAG UUGGAUCUUG GGAGCGGGCG GGCGGUCCGC CGCGAGGCGA GCCACCGCCC GUCCCCGCCC CUUGCCUCUC GGCGCCCCCU CGAUGCUCUU AGCUGAGUGU CCCGCGGGGC CCGAAGCGUU UACUUUGAAA AAAUUAGAGU GUUCAAAGCA GGCCCGAGCC GCCUGGAUAC CGCAGCUAGG AAUAAUGGAA UAGGACCGCG GUUCUAUUUU GUUGGUUUUC GGAACUGAGG CCAUGAUUAA GAGGGACGGC CGGGGGCAUU CGUAUUGCGC CGCUAGAGGU GAAAUUCUUG GACCGGCGCA AGACGGACCA GAGCGAAAGC AUUUGCCAAG AAUGUUUUCA UUAAUCAAGA ACGAAAGUCG GAGGUUCGAA GACGAUCAGA UACCGUCGUA GUUCCGACCA UAAACGAUGC CGACCGGCGA UGCGGCGGCG UUAUUCCCAU GACCCGCCGG GCAGCUUCCG GGAAACCAAA GUCUUUGGGU UCCGGGGGGA GUAUGGUUGC AAAGCUGAAA CUUAAAGGAA UUGACGGAAG GGCACCACCA GGAGUGGAGC CUGCGGCUUA AUUUGACUCA ACACGGGAAA CCUCACCCGG CCCGGACACG GACAGGAUUG ACAGAUUGAU AGCUCUUUCU CGAUUCCGUG GGUGGUGGUG CAUGGCCGUU CUUAGUUGGU GGAGCGAUUU GUCUGGUUAA UUCCGAUAAC GAACGAGACU CUGGCAUGCU AACUAGUUAC GCGACCCCCG AGCGGUCGGC GUCCCCCAAC UUCUUAGAGG GACAAGUGGC GUUCAGCCAC CCGAGAUUGA GCAAUAACAG GUCUGUGAUG CCCUUAGAUG UCCGGGGCUG CACGCGCGCU ACACUGACUG GCUCAGCGUG UGCCUACCCU ACGCCGGCAG GCGCGGGUAA CCCGUUGAAC CCCAUUCGUG AUGGGGAUCG GGGAUUGCAA UUAUUCCCCA UGAACGAGGA AUUCCCAGUA AGUGCGGGUC AUAAGCUUGC GUUGAUUAAG UCCCUGCCCU UUGUACACAC CGCCCGUCGC UACUACCGAU UGGAUGGUUU AGUGAGGCCC UCGGAUCGGC CCCGCCGGGG UCGGCCCACG CCCUGGCGGA GCGCUGAGAA GACGGUCGAA CUUGACUAUC UAGAGGAAGU AAAAGUCGUA ACAAGGUUUC CGUAGGUGAA CCUGCGGAAG GAUCAUUA
MassTheoretical: 602.432625 kDa
SourceSpecies: Human (human)

+
Component #6: protein, 40S ribosomal protein S29

ProteinName: 40S ribosomal protein S29 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 6.690821 kDa
SourceSpecies: Human (human)

+
Component #7: protein, 40S ribosomal protein S3

ProteinName: 40S ribosomal protein S3 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 26.729369 kDa
SourceSpecies: Human (human)

+
Component #8: protein, 40S ribosomal protein S5

ProteinName: 40S ribosomal protein S5 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 22.913453 kDa
SourceSpecies: Human (human)

+
Component #9: protein, 40S ribosomal protein S10

ProteinName: 40S ribosomal protein S10 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 18.933846 kDa
SourceSpecies: Human (human)

+
Component #10: protein, 40S ribosomal protein S12

ProteinName: 40S ribosomal protein S12 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 14.538987 kDa
SourceSpecies: Human (human)

+
Component #11: protein, 40S ribosomal protein S15

ProteinName: 40S ribosomal protein S15 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 17.076207 kDa
SourceSpecies: Human (human)

+
Component #12: protein, 40S ribosomal protein S16

ProteinName: 40S ribosomal protein S16 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 16.477377 kDa
SourceSpecies: Human (human)

+
Component #13: protein, 40S ribosomal protein S18

ProteinName: 40S ribosomal protein S18 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 17.759777 kDa
SourceSpecies: Human (human)

+
Component #14: protein, 40S ribosomal protein S19

ProteinName: 40S ribosomal protein S19 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 16.091562 kDa
SourceSpecies: Human (human)

+
Component #15: protein, 40S ribosomal protein S20

ProteinName: 40S ribosomal protein S20 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 13.398763 kDa
SourceSpecies: Human (human)

+
Component #16: protein, 40S ribosomal protein S25

ProteinName: 40S ribosomal protein S25 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 13.776224 kDa
SourceSpecies: Human (human)

+
Component #17: protein, 40S ribosomal protein S28

ProteinName: 40S ribosomal protein S28 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 7.855052 kDa
SourceSpecies: Human (human)

+
Component #18: protein, 40S ribosomal protein S27a

ProteinName: 40S ribosomal protein S27aRibosome / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 17.083053 kDa
SourceSpecies: Human (human)

+
Component #19: protein, Receptor of activated protein C kinase 1

ProteinName: Receptor of activated protein C kinase 1 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 35.115652 kDa
SourceSpecies: Human (human)

+
Component #20: protein, 40S ribosomal protein SA

ProteinName: 40S ribosomal protein SA / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 32.883938 kDa
SourceSpecies: Human (human)

+
Component #21: protein, 40S ribosomal protein S3a

ProteinName: 40S ribosomal protein S3a / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 30.002061 kDa
SourceSpecies: Human (human)

+
Component #22: protein, 40S ribosomal protein S2

ProteinName: 40S ribosomal protein S2 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 31.376516 kDa
SourceSpecies: Human (human)

+
Component #23: protein, 40S ribosomal protein S4, X isoform

ProteinName: 40S ribosomal protein S4, X isoformRibosome / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 29.654869 kDa
SourceSpecies: Human (human)

+
Component #24: protein, 40S ribosomal protein S6

ProteinName: 40S ribosomal protein S6 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 28.751906 kDa
SourceSpecies: Human (human)

+
Component #25: protein, 40S ribosomal protein S7

ProteinName: 40S ribosomal protein S7 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 22.168914 kDa
SourceSpecies: Human (human)

+
Component #26: protein, 40S ribosomal protein S8

ProteinName: 40S ribosomal protein S8 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 24.263387 kDa
SourceSpecies: Human (human)

+
Component #27: protein, 40S ribosomal protein S9

ProteinName: 40S ribosomal protein S9 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 22.641564 kDa
SourceSpecies: Human (human)

+
Component #28: protein, 40S ribosomal protein S11

ProteinName: 40S ribosomal protein S11 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 18.468826 kDa
SourceSpecies: Human (human)

+
Component #29: protein, 40S ribosomal protein S13

ProteinName: 40S ribosomal protein S13 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 17.259389 kDa
SourceSpecies: Human (human)

+
Component #30: protein, 40S ribosomal protein S14

ProteinName: 40S ribosomal protein S14 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 16.302772 kDa
SourceSpecies: Human (human)

+
Component #31: protein, 40S ribosomal protein S21

ProteinName: 40S ribosomal protein S21 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 9.124389 kDa
SourceSpecies: Human (human)

+
Component #32: protein, 40S ribosomal protein S15a

ProteinName: 40S ribosomal protein S15a / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 14.865555 kDa
SourceSpecies: Human (human)

+
Component #33: protein, 40S ribosomal protein S23

ProteinName: 40S ribosomal protein S23 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 15.844666 kDa
SourceSpecies: Human (human)

+
Component #34: protein, 40S ribosomal protein S24

ProteinName: 40S ribosomal protein S24 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 15.463333 kDa
SourceSpecies: Human (human)

+
Component #35: protein, 40S ribosomal protein S26

ProteinName: 40S ribosomal protein S26 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 11.776989 kDa
SourceSpecies: Human (human)

+
Component #36: protein, 40S ribosomal protein S27

ProteinName: 40S ribosomal protein S27 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 9.480186 kDa
SourceSpecies: Human (human)

+
Component #37: protein, 40S ribosomal protein S30

ProteinName: 40S ribosomal protein S30 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 6.668938 kDa
SourceSpecies: Human (human)

+
Component #38: protein, 60S ribosomal protein L41

ProteinName: 60S ribosomal protein L41 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 3.473451 kDa
SourceSpecies: Human (human)

+
Component #39: protein, SARS-COV-2 Nsp1

ProteinName: SARS-COV-2 Nsp1 / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 19.801287 kDa
SourceSpecies: 2019-nCoV (virus)

+
Component #40: ligand, MAGNESIUM ION

LigandName: MAGNESIUM ION / Number of Copies: 1 / Recombinant expression: No
MassTheoretical: 2.430505 MDa

+
Component #41: ligand, ZINC ION

LigandName: ZINC ION / Number of Copies: 3 / Recombinant expression: No
MassTheoretical: 6.540905 MDa

-
Experimental details

-
Sample preparation

SpecimenSpecimen state: Particle / Method: cryo EM
Sample solutionpH: 7.4
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
ImagingMicroscope: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Electron dose: 50 e/Å2 / Illumination mode: SPOT SCAN
LensImaging mode: BRIGHT FIELD
Specimen HolderModel: OTHER
CameraDetector: OTHER

-
Image processing

ProcessingMethod: single particle reconstruction / Number of projections: 794651
3D reconstructionResolution: 2.9 Å / Resolution method: FSC 0.143 CUT-OFF

-
Atomic model buiding

Output model

+
About Yorodumi

-
News

-
Aug 12, 2020. New: Covid-19 info

New: Covid-19 info

  • New page: Covid-19 featured information page in EM Navigator

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

-
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. New: Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force. (see PDBe EMDB page)
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is "EMD"? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB at PDBe / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary. This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated. See below links for details.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software). Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

+
Jun 16, 2017. Omokage search with filter

Omokage search with filter

  • Result of Omokage search can be filtered by keywords and the database types

Related info.:Omokage search

Read more

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more