- EMDB-1067: Domain movements of elongation factor eEF2 and the eukaryotic 80S... -
+
Open data
ID or keywords:
Loading...
-
Basic information
Entry
Database: EMDB / ID: EMD-1067
Title
Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation.
Map data
map
Sample
Sample: Ribosomal 80S-eEF2-sordarin complex from S. cerevisiae
Complex: 80S ribosome
Protein or peptide: eEF2
Function / homology
Function and homology information
: / Peptide chain elongation / Synthesis of diphthamide-EEF2 / positive regulation of translational elongation / regulation of amino acid metabolic process / negative regulation of glucose mediated signaling pathway / positive regulation of translational fidelity / RMTs methylate histone arginines / Protein methylation / Protein hydroxylation ...: / Peptide chain elongation / Synthesis of diphthamide-EEF2 / positive regulation of translational elongation / regulation of amino acid metabolic process / negative regulation of glucose mediated signaling pathway / positive regulation of translational fidelity / RMTs methylate histone arginines / Protein methylation / Protein hydroxylation / ribosome-associated ubiquitin-dependent protein catabolic process / GDP-dissociation inhibitor activity / Formation of the ternary complex, and subsequently, the 43S complex / Translation initiation complex formation / Ribosomal scanning and start codon recognition / preribosome, small subunit precursor / nonfunctional rRNA decay / response to cycloheximide / cleavage in ITS2 between 5.8S rRNA and LSU-rRNA of tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / Major pathway of rRNA processing in the nucleolus and cytosol / mRNA destabilization / SRP-dependent cotranslational protein targeting to membrane / GTP hydrolysis and joining of the 60S ribosomal subunit / negative regulation of translational frameshifting / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) / Formation of a pool of free 40S subunits / preribosome, large subunit precursor / L13a-mediated translational silencing of Ceruloplasmin expression / endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / translational elongation / ribosomal large subunit export from nucleus / G-protein alpha-subunit binding / 90S preribosome / translation elongation factor activity / ribosomal subunit export from nucleus / regulation of translational fidelity / endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / translational termination / maturation of LSU-rRNA / ribosomal small subunit export from nucleus / translation regulator activity / DNA-(apurinic or apyrimidinic site) endonuclease activity / rescue of stalled ribosome / Neutrophil degranulation / maturation of LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / ribosomal large subunit biogenesis / protein kinase C binding / maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / maturation of SSU-rRNA / translational initiation / small-subunit processome / maintenance of translational fidelity / cytoplasmic stress granule / rRNA processing / large ribosomal subunit / protein-folding chaperone binding / ribosome binding / ribosomal small subunit biogenesis / ribosomal small subunit assembly / small ribosomal subunit / 5S rRNA binding / ribosomal large subunit assembly / cytosolic small ribosomal subunit / large ribosomal subunit rRNA binding / small ribosomal subunit rRNA binding / Hydrolases; Acting on acid anhydrides; Acting on GTP to facilitate cellular and subcellular movement / cytosolic large ribosomal subunit / cytoplasmic translation / negative regulation of translation / rRNA binding / ribosome / structural constituent of ribosome / G protein-coupled receptor signaling pathway / translation / ribonucleoprotein complex / negative regulation of gene expression / response to antibiotic / GTPase activity / mRNA binding / GTP binding / nucleolus / mitochondrion / RNA binding / zinc ion binding / nucleoplasm / metal ion binding / identical protein binding / nucleus / cytosol / cytoplasm Similarity search - Function
Elongation Factor G, domain II / Elongation Factor G, domain III / Translation elongation factor EFG/EF2, domain IV / Elongation factor G, domain IV / Elongation factor G, domain IV / Elongation factor G C-terminus / Elongation factor EFG, domain V-like / Elongation factor G C-terminus / EF-G domain III/V-like / : ...Elongation Factor G, domain II / Elongation Factor G, domain III / Translation elongation factor EFG/EF2, domain IV / Elongation factor G, domain IV / Elongation factor G, domain IV / Elongation factor G C-terminus / Elongation factor EFG, domain V-like / Elongation factor G C-terminus / EF-G domain III/V-like / : / Tr-type G domain, conserved site / Translational (tr)-type guanine nucleotide-binding (G) domain signature. / Ribosomal protein L1, conserved site / Ribosomal protein L1 signature. / Ribosomal protein L1 / Small (40S) ribosomal subunit Asc1/RACK1 / Ribosomal protein S5, eukaryotic/archaeal / Ribosomal protein S2, eukaryotic / Translation elongation factor EFTu-like, domain 2 / Ribosomal protein L10e, conserved site / Ribosomal protein L10e signature. / Ribosomal protein L10e / Ribosomal protein L44e signature. / Ribosomal protein L1, 3-layer alpha/beta-sandwich / Ribosomal protein L24e, conserved site / Ribosomal protein L24e signature. / Ribosomal protein S10, eukaryotic/archaeal / Ribosomal protein L19, eukaryotic / Ribosomal protein L19/L19e conserved site / Ribosomal protein L19e signature. / : / Ribosomal protein L44e / Ribosomal protein L44 / Ribosomal protein S2, eukaryotic/archaeal / : / Ribosomal protein L5 eukaryotic, C-terminal / Ribosomal L18 C-terminal region / 40S ribosomal protein S29/30S ribosomal protein S14 type Z / Ribosomal protein L23/L25, N-terminal / Ribosomal protein L23, N-terminal domain / Ribosomal protein S3, eukaryotic/archaeal / Elongation factor Tu domain 2 / Ribosomal protein 60S L18 and 50S L18e / Ribosomal protein L18/L18-A/B/e, conserved site / Ribosomal protein L18e signature. / Ribosomal protein L1-like / Ribosomal protein L1/ribosomal biogenesis protein / Ribosomal protein L1p/L10e family / Ribosomal protein S19A/S15e / 40S ribosomal protein S11, N-terminal / Ribosomal_S17 N-terminal / 60S ribosomal protein L19 / Ribosomal protein L7A/L8 / 60S ribosomal protein L35 / Ribosomal protein L13, eukaryotic/archaeal / Ribosomal protein L18e / 60S ribosomal protein L4, C-terminal domain / 60S ribosomal protein L4 C-terminal domain / Ribosomal protein L7, eukaryotic / Ribosomal protein L30, N-terminal / Ribosomal protein L31e, conserved site / Ribosomal L30 N-terminal domain / Ribosomal protein L31e signature. / Ribosomal protein L37ae / Ribosomal L37ae protein family / Ribosomal_L19e / Ribosomal protein L19/L19e / Ribosomal protein L19/L19e, domain 1 / Ribosomal protein L19/L19e superfamily / Ribosomal protein L19e, N-terminal domain / Ribosomal protein S23, eukaryotic/archaeal / Ribosomal protein L32e, conserved site / Ribosomal protein L32e signature. / Ribosomal protein L5 eukaryotic/L18 archaeal / Ribosomal large subunit proteins 60S L5, and 50S L18 / Ribosomal protein L6, conserved site-2 / Ribosomal protein L6 signature 2. / Ribosomal protein S17, archaeal/eukaryotic / Ribosomal protein S5/S7, eukaryotic/archaeal / Ribosomal protein L4/L1e, eukaryotic/archaeal, conserved site / Ribosomal protein L1e signature. / Ribosomal protein L15e, conserved site / Ribosomal protein L15e signature. / Ribosomal protein S13/S15, N-terminal / Ribosomal protein S15P / Ribosomal S13/S15 N-terminal domain / Ribosomal S13/S15 N-terminal domain / Ribosomal protein S4/S9, eukaryotic/archaeal / Ribosomal protein L31e / Ribosomal protein L31e domain superfamily / Ribosomal protein L31e / Ribosomal_L31e / Ribosomal protein L21e / Ribosomal protein L21e, conserved site / Ribosomal protein L21 superfamily / Ribosomal protein L21e / Ribosomal protein L21e signature. / Ribosomal protein L24e-related / Ribosomal protein L24e/L24 superfamily / Ribosomal protein L24e Similarity search - Domain/homology
Small ribosomal subunit protein uS4A / 60S ribosomal protein L42-A / Large ribosomal subunit protein uL15 / Large ribosomal subunit protein eL24A / 60S ribosomal protein L23-B / Large ribosomal subunit protein uL23 / 40S ribosomal protein S22-A / 60S ribosomal protein L31-B / 60S ribosomal protein L19-A / 60S ribosomal protein L2-A ...Small ribosomal subunit protein uS4A / 60S ribosomal protein L42-A / Large ribosomal subunit protein uL15 / Large ribosomal subunit protein eL24A / 60S ribosomal protein L23-B / Large ribosomal subunit protein uL23 / 40S ribosomal protein S22-A / 60S ribosomal protein L31-B / 60S ribosomal protein L19-A / 60S ribosomal protein L2-A / Large ribosomal subunit protein uL30A / Large ribosomal subunit protein uL6A / Large ribosomal subunit protein uL22A / Large ribosomal subunit protein uL24A / Large ribosomal subunit protein eL15A / Small ribosomal subunit protein uS3 / Small ribosomal subunit protein uS15 / Small ribosomal subunit protein uS11A / 60S ribosomal protein L11-B / 60S ribosomal protein L18-A / Large ribosomal subunit protein eL31B / Large ribosomal subunit protein eL43B / Large ribosomal subunit protein eL42B / Small ribosomal subunit protein uS12B / Large ribosomal subunit protein uL14B / Large ribosomal subunit protein uL1A / Large ribosomal subunit protein uL2B / Small ribosomal subunit protein uS17B / Large ribosomal subunit protein eL18B / Small ribosomal subunit protein uS9B / Large ribosomal subunit protein uL11A / Small ribosomal subunit protein uS13B / Large ribosomal subunit protein eL19 / Large ribosomal subunit protein uL29A / Large ribosomal subunit protein uL3 / Large ribosomal subunit protein eL8A / 60S ribosomal protein L12-A / Small ribosomal subunit protein uS5 / Large ribosomal subunit protein uL18 / 40S ribosomal protein S11-B / Small ribosomal subunit protein uS7 / Large ribosomal subunit protein uL13A / Elongation factor 2 / 40S ribosomal protein S23-A / Small ribosomal subunit protein uS2A / 40S ribosomal protein S18-A / Small ribosomal subunit protein RACK1 / Large ribosomal subunit protein eL32 / Small ribosomal subunit protein uS10 / 60S ribosomal protein L35-A / 40S ribosomal protein S16-B / Small ribosomal subunit protein uS14B / Large ribosomal subunit protein uL16 / Large ribosomal subunit protein eL37A / Large ribosomal subunit protein uL4B / 60S ribosomal protein L43-A / 60S ribosomal protein L1-B / Small ribosomal subunit protein uS19 / Large ribosomal subunit protein eL21A / Large ribosomal subunit protein uL5B / Small ribosomal subunit protein uS8B Similarity search - Component
Biological species
Saccharomyces cerevisiae (brewer's yeast)
Method
single particle reconstruction / cryo EM / Resolution: 11.7 Å
Journal: EMBO J / Year: 2004 Title: Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. Authors: Christian M T Spahn / Maria G Gomez-Lorenzo / Robert A Grassucci / Rene Jørgensen / Gregers R Andersen / Roland Beckmann / Pawel A Penczek / Juan P G Ballesta / Joachim Frank / Abstract: An 11.7-A-resolution cryo-EM map of the yeast 80S.eEF2 complex in the presence of the antibiotic sordarin was interpreted in molecular terms, revealing large conformational changes within eEF2 and ...An 11.7-A-resolution cryo-EM map of the yeast 80S.eEF2 complex in the presence of the antibiotic sordarin was interpreted in molecular terms, revealing large conformational changes within eEF2 and the 80S ribosome, including a rearrangement of the functionally important ribosomal intersubunit bridges. Sordarin positions domain III of eEF2 so that it can interact with the sarcin-ricin loop of 25S rRNA and protein rpS23 (S12p). This particular conformation explains the inhibitory action of sordarin and suggests that eEF2 is stalled on the 80S ribosome in a conformation that has similarities with the GTPase activation state. A ratchet-like subunit rearrangement (RSR) occurs in the 80S.eEF2.sordarin complex that, in contrast to Escherichia coli 70S ribosomes, is also present in vacant 80S ribosomes. A model is suggested, according to which the RSR is part of a mechanism for moving the tRNAs during the translocation reaction.
History
Deposition
Jan 5, 2004
-
Header (metadata) release
Jan 6, 2004
-
Map release
Jan 6, 2005
-
Update
Oct 24, 2012
-
Current status
Oct 24, 2012
Processing site: PDBe / Status: Released
-
Structure visualization
Movie
Surface view with section colored by density value
Category: FILM / Film or detector model: KODAK SO-163 FILM / Digitization - Scanner: ZEISS SCAI / Number real images: 86 / Average electron dose: 15 e/Å2 / Bits/pixel: 12
Tilt angle min
0
Tilt angle max
0
Electron beam
Acceleration voltage: 200 kV / Electron source: FIELD EMISSION GUN
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi