Journal: EMBO Rep / Year: 2019 Title: CENP-C unwraps the human CENP-A nucleosome through the H2A C-terminal tail. Authors: Ahmad Ali-Ahmad / Silvija Bilokapić / Ingmar B Schäfer / Mario Halić / Nikolina Sekulić / Abstract: Centromeres are defined epigenetically by nucleosomes containing the histone H3 variant CENP-A, upon which the constitutive centromere-associated network of proteins (CCAN) is built. CENP-C is ...Centromeres are defined epigenetically by nucleosomes containing the histone H3 variant CENP-A, upon which the constitutive centromere-associated network of proteins (CCAN) is built. CENP-C is considered to be a central organizer of the CCAN. We provide new molecular insights into the structure of human CENP-A nucleosomes, in isolation and in complex with the CENP-C central region (CENP-C ), the main CENP-A binding module of human CENP-C. We establish that the short αN helix of CENP-A promotes DNA flexibility at the nucleosome ends, independently of the sequence it wraps. Furthermore, we show that, in vitro, two regions of human CENP-C (CENP-C and CENP-C ) both bind exclusively to the CENP-A nucleosome. We find CENP-C to bind with high affinity due to an extended hydrophobic area made up of CENP-A and CENP-A . Importantly, we identify two key conformational changes within the CENP-A nucleosome upon CENP-C binding. First, the loose DNA wrapping of CENP-A nucleosomes is further exacerbated, through destabilization of the H2A C-terminal tail. Second, CENP-C rigidifies the N-terminal tail of H4 in the conformation favoring H4 monomethylation, essential for a functional centromere.
History
Deposition
Jul 30, 2019
-
Header (metadata) release
Aug 14, 2019
-
Map release
Aug 14, 2019
-
Update
Oct 16, 2019
-
Current status
Oct 16, 2019
Processing site: PDBe / Status: Released
-
Structure visualization
Movie
Surface view with section colored by density value
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force. (see PDBe EMDB page)
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is "EMD"? / ID/Accession-code notation in Yorodumi/EM Navigator
wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary. This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated. See below links for details.
In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software). Now, EM Navigator and Yorodumi are based on the updated data.
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi