+Open data
-Basic information
Entry | Database: PDB / ID: 6y5d | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | Structure of human cGAS (K394E) bound to the nucleosome | |||||||||||||||
Components |
| |||||||||||||||
Keywords | IMMUNE SYSTEM / cGAS / STING / Nucleosome / Innate Immunity / cGMP-AMP | |||||||||||||||
Function / homology | Function and homology information water channel activity / negative regulation of megakaryocyte differentiation / protein localization to CENP-A containing chromatin / Chromatin modifying enzymes / Replacement of protamines by nucleosomes in the male pronucleus / CENP-A containing nucleosome / Packaging Of Telomere Ends / Recognition and association of DNA glycosylase with site containing an affected purine / Cleavage of the damaged purine / Deposition of new CENPA-containing nucleosomes at the centromere ...water channel activity / negative regulation of megakaryocyte differentiation / protein localization to CENP-A containing chromatin / Chromatin modifying enzymes / Replacement of protamines by nucleosomes in the male pronucleus / CENP-A containing nucleosome / Packaging Of Telomere Ends / Recognition and association of DNA glycosylase with site containing an affected purine / Cleavage of the damaged purine / Deposition of new CENPA-containing nucleosomes at the centromere / nucleosomal DNA binding / Recognition and association of DNA glycosylase with site containing an affected pyrimidine / Cleavage of the damaged pyrimidine / Inhibition of DNA recombination at telomere / telomere organization / Meiotic synapsis / Interleukin-7 signaling / RNA Polymerase I Promoter Opening / Assembly of the ORC complex at the origin of replication / SUMOylation of chromatin organization proteins / Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex / DNA methylation / Condensation of Prophase Chromosomes / SIRT1 negatively regulates rRNA expression / Chromatin modifications during the maternal to zygotic transition (MZT) / ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression / HCMV Late Events / innate immune response in mucosa / PRC2 methylates histones and DNA / Regulation of endogenous retroelements by KRAB-ZFP proteins / Defective pyroptosis / Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) / HDACs deacetylate histones / Nonhomologous End-Joining (NHEJ) / RNA Polymerase I Promoter Escape / Transcriptional regulation by small RNAs / Formation of the beta-catenin:TCF transactivating complex / RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function / NoRC negatively regulates rRNA expression / Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 / G2/M DNA damage checkpoint / HDMs demethylate histones / B-WICH complex positively regulates rRNA expression / DNA Damage/Telomere Stress Induced Senescence / heterochromatin formation / PKMTs methylate histone lysines / Metalloprotease DUBs / Meiotic recombination / Pre-NOTCH Transcription and Translation / RMTs methylate histone arginines / Activation of anterior HOX genes in hindbrain development during early embryogenesis / HCMV Early Events / Transcriptional regulation of granulopoiesis / structural constituent of chromatin / UCH proteinases / antimicrobial humoral immune response mediated by antimicrobial peptide / nucleosome / nucleosome assembly / E3 ubiquitin ligases ubiquitinate target proteins / antibacterial humoral response / Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at DNA double strand breaks / chromatin organization / RUNX1 regulates transcription of genes involved in differentiation of HSCs / Factors involved in megakaryocyte development and platelet production / HATs acetylate histones / Processing of DNA double-strand break ends / Senescence-Associated Secretory Phenotype (SASP) / Oxidative Stress Induced Senescence / defense response to Gram-negative bacterium / Estrogen-dependent gene expression / killing of cells of another organism / chromosome, telomeric region / Ub-specific processing proteases / defense response to Gram-positive bacterium / protein heterodimerization activity / Amyloid fiber formation / protein-containing complex / DNA binding / RNA binding / extracellular space / extracellular exosome / extracellular region / nucleoplasm / membrane / nucleus / plasma membrane / cytosol Similarity search - Function | |||||||||||||||
Biological species | Homo sapiens (human) | |||||||||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 4.1 Å | |||||||||||||||
Authors | Pathare, G.R. / Cavadini, S. / Kempf, G. / Thoma, N.H. | |||||||||||||||
Funding support | Switzerland, 4items
| |||||||||||||||
Citation | Journal: Nature / Year: 2020 Title: Structural mechanism of cGAS inhibition by the nucleosome. Authors: Ganesh R Pathare / Alexiane Decout / Selene Glück / Simone Cavadini / Kristina Makasheva / Ruud Hovius / Georg Kempf / Joscha Weiss / Zuzanna Kozicka / Baptiste Guey / Pauline Melenec / ...Authors: Ganesh R Pathare / Alexiane Decout / Selene Glück / Simone Cavadini / Kristina Makasheva / Ruud Hovius / Georg Kempf / Joscha Weiss / Zuzanna Kozicka / Baptiste Guey / Pauline Melenec / Beat Fierz / Nicolas H Thomä / Andrea Ablasser / Abstract: The DNA sensor cyclic GMP-AMP synthase (cGAS) initiates innate immune responses following microbial infection, cellular stress and cancer. Upon activation by double-stranded DNA, cytosolic cGAS ...The DNA sensor cyclic GMP-AMP synthase (cGAS) initiates innate immune responses following microbial infection, cellular stress and cancer. Upon activation by double-stranded DNA, cytosolic cGAS produces 2'3' cGMP-AMP, which triggers the induction of inflammatory cytokines and type I interferons . cGAS is also present inside the cell nucleus, which is replete with genomic DNA, where chromatin has been implicated in restricting its enzymatic activity. However, the structural basis for inhibition of cGAS by chromatin remains unknown. Here we present the cryo-electron microscopy structure of human cGAS bound to nucleosomes. cGAS makes extensive contacts with both the acidic patch of the histone H2A-H2B heterodimer and nucleosomal DNA. The structural and complementary biochemical analysis also find cGAS engaged to a second nucleosome in trans. Mechanistically, binding of the nucleosome locks cGAS into a monomeric state, in which steric hindrance suppresses spurious activation by genomic DNA. We find that mutations to the cGAS-acidic patch interface are sufficient to abolish the inhibitory effect of nucleosomes in vitro and to unleash the activity of cGAS on genomic DNA in living cells. Our work uncovers the structural basis of the interaction between cGAS and chromatin and details a mechanism that permits self-non-self discrimination of genomic DNA by cGAS. | |||||||||||||||
History |
|
-Structure visualization
Movie |
Movie viewer |
---|---|
Structure viewer | Molecule: MolmilJmol/JSmol |
-Downloads & links
-Download
PDBx/mmCIF format | 6y5d.cif.gz | 751.1 KB | Display | PDBx/mmCIF format |
---|---|---|---|---|
PDB format | pdb6y5d.ent.gz | 583.9 KB | Display | PDB format |
PDBx/mmJSON format | 6y5d.json.gz | Tree view | PDBx/mmJSON format | |
Others | Other downloads |
-Validation report
Summary document | 6y5d_validation.pdf.gz | 1000.4 KB | Display | wwPDB validaton report |
---|---|---|---|---|
Full document | 6y5d_full_validation.pdf.gz | 1004.3 KB | Display | |
Data in XML | 6y5d_validation.xml.gz | 64.8 KB | Display | |
Data in CIF | 6y5d_validation.cif.gz | 105.8 KB | Display | |
Arichive directory | https://data.pdbj.org/pub/pdb/validation_reports/y5/6y5d ftp://data.pdbj.org/pub/pdb/validation_reports/y5/6y5d | HTTPS FTP |
-Related structure data
Related structure data | 10694MC 6y5eC M: map data used to model this data C: citing same article (ref.) |
---|---|
Similar structure data |
-Links
-Assembly
Deposited unit |
|
---|---|
1 |
|
-Components
-Protein , 5 types, 18 molecules AEMQBFNRCGOSDHPTKL
#1: Protein | Mass: 11456.345 Da / Num. of mol.: 4 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Homo sapiens (human) / Gene: HIST2H3A, HIST2H3C, H3F2, H3FM, HIST2H3D / Production host: Escherichia coli K-12 (bacteria) / References: UniProt: Q71DI3 #2: Protein | Mass: 11394.426 Da / Num. of mol.: 4 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Homo sapiens (human) Gene: HIST1H4A, H4/A, H4FA, HIST1H4B, H4/I, H4FI, HIST1H4C, H4/G, H4FG, HIST1H4D, H4/B, H4FB, HIST1H4E, H4/J, H4FJ, HIST1H4F, H4/C, H4FC, HIST1H4H, H4/H, H4FH, HIST1H4I, H4/M, H4FM, HIST1H4J, H4/E, ...Gene: HIST1H4A, H4/A, H4FA, HIST1H4B, H4/I, H4FI, HIST1H4C, H4/G, H4FG, HIST1H4D, H4/B, H4FB, HIST1H4E, H4/J, H4FJ, HIST1H4F, H4/C, H4FC, HIST1H4H, H4/H, H4FH, HIST1H4I, H4/M, H4FM, HIST1H4J, H4/E, H4FE, HIST1H4K, H4/D, H4FD, HIST1H4L, H4/K, H4FK, HIST2H4A, H4/N, H4F2, H4FN, HIST2H4, HIST2H4B, H4/O, H4FO, HIST4H4 Production host: Escherichia coli K-12 (bacteria) / References: UniProt: P62805 #3: Protein | Mass: 14125.549 Da / Num. of mol.: 4 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Homo sapiens (human) / Gene: HIST2H2AA3, H2AFO, HIST2H2AA, HIST2H2AA4 / Production host: Escherichia coli (E. coli) / References: UniProt: Q6FI13 #4: Protein | Mass: 13921.213 Da / Num. of mol.: 4 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Homo sapiens (human) / Gene: HIST1H2BK, H2BFT, HIRIP1 / Production host: Escherichia coli K-12 (bacteria) / References: UniProt: O60814 #7: Protein | Mass: 42404.840 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Homo sapiens (human) / Gene: CGAS, C6orf150, MB21D1 / Production host: Escherichia coli K-12 (bacteria) / References: UniProt: Q8N884, cyclic GMP-AMP synthase |
---|
-DNA chain , 2 types, 4 molecules IUJV
#5: DNA chain | Mass: 46998.945 Da / Num. of mol.: 2 / Source method: obtained synthetically / Source: (synth.) Homo sapiens (human) #6: DNA chain | Mass: 47457.234 Da / Num. of mol.: 2 / Source method: obtained synthetically / Source: (synth.) Homo sapiens (human) |
---|
-Non-polymers , 2 types, 11 molecules
#8: Chemical | ChemComp-PTD / #9: Chemical | |
---|
-Details
Has protein modification | Y |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-Sample preparation
Component |
| ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Molecular weight | Value: 0.24 MDa / Experimental value: YES | ||||||||||||||||||||||||||||||
Source (natural) |
| ||||||||||||||||||||||||||||||
Source (recombinant) |
| ||||||||||||||||||||||||||||||
Buffer solution | pH: 7.4 | ||||||||||||||||||||||||||||||
Specimen | Conc.: 1 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES | ||||||||||||||||||||||||||||||
Vitrification | Cryogen name: ETHANE |
-Electron microscopy imaging
Experimental equipment | Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: SPOT SCAN |
Electron lens | Mode: BRIGHT FIELD / Cs: 0.01 mm / C2 aperture diameter: 100 µm |
Image recording | Electron dose: 45 e/Å2 / Detector mode: COUNTING / Film or detector model: GATAN K2 QUANTUM (4k x 4k) |
-Processing
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION |
---|---|
Symmetry | Point symmetry: C1 (asymmetric) |
3D reconstruction | Resolution: 4.1 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 13943 / Symmetry type: POINT |