[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleActivation of the SPARDA defense system by filament assembly using a beta-relay signaling mechanism widespread in prokaryotic Argonautes.
Journal, issue, pagesCell Res, Vol. 35, Issue 12, Page 1056-1078, Year 2025
Publish dateNov 27, 2025
AuthorsEdvinas Jurgelaitis / Evelina Zagorskaitė / Aurimas Kopūstas / Simonas Asmontas / Elena Manakova / Indrė Dalgėdienė / Ugnė Tylenytė / Arunas Silanskas / Paulius Toliusis / Algirdas Grybauskas / Marijonas Tutkus / Česlovas Venclovas / Mindaugas Zaremba
PubMed AbstractPresent in all three domains of life, Argonaute proteins use short oligonucleotides as guides to recognize complementary nucleic acid targets. In eukaryotes, Argonautes are involved in RNA silencing, ...Present in all three domains of life, Argonaute proteins use short oligonucleotides as guides to recognize complementary nucleic acid targets. In eukaryotes, Argonautes are involved in RNA silencing, whereas in prokaryotes, they function in host defense against invading DNA. Here, we show that SPARDA (short prokaryotic Argonaute, DNase associated) systems from Xanthobacter autotrophicus (Xau) and Enhydrobacter aerosaccus (Eae) function in anti-plasmid defense. Upon activation, SPARDA nonspecifically degrades both invader and genomic DNA, causing host death, thereby preventing further spread of the invader in the population. X-ray structures of the apo Xau and EaeSPARDA complexes show that they are dimers, unlike other apo short pAgo systems, which are monomers. We show that dimerization in the apo state is essential for inhibition of XauSPARDA activity. We demonstrate by cryo-EM that activated XauSPARDA forms a filament. Upon activation, the recognition signal of the bound guide/target duplex is relayed to other functional XauSPARDA sites through a structural region that we termed the "beta-relay". Owing to dramatic conformational changes associated with guide/target binding, XauSPARDA undergoes a "dimer-monomer-filament" transition as the apo dimer dissociates into the guide/target-loaded monomers that subsequently assemble into the filament. Within the activated filament, the DREN nuclease domains form tetramers that are poised to cleave dsDNA. We show that other SPARDAs also form filaments during activation. Furthermore, we identify the presence of the beta-relay in pAgo from all clades, providing new insights into the structural mechanisms of pAgo proteins. Taken together, these findings reveal the detailed structural mechanism of SPARDA and highlight the importance of the beta-relay mechanism in signal transduction in Argonautes.
External linksCell Res / PubMed:41298897 / PubMed Central
MethodsEM (single particle) / X-ray diffraction
Resolution1.5 - 3.0 Å
Structure data

EMDB-53008, PDB-9qcc:
Activated XauSPARDA filament assembly with bound dsDNA substrate
Method: EM (single particle) / Resolution: 3.0 Å

PDB-9qbl:
Crystal structure of Xanthobacter autotrophicus SPARDA mutant lacking DREN nuclease domains
Method: X-RAY DIFFRACTION / Resolution: 1.5 Å

PDB-9qbp:
Crystal structure of Enhydrobacter aerosaccus apo SPARDA complex
Method: X-RAY DIFFRACTION / Resolution: 2.45 Å

PDB-9qbq:
Crystal structure of apo SPARDA complex from Xanthobacter autotrophicus
Method: X-RAY DIFFRACTION / Resolution: 3 Å

Chemicals

ChemComp-ACY:
ACETIC ACID

ChemComp-GOL:
GLYCEROL

ChemComp-TRS:
2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL / pH buffer*YM

ChemComp-PEG:
DI(HYDROXYETHYL)ETHER

ChemComp-CL:
Unknown entry

ChemComp-BME:
BETA-MERCAPTOETHANOL

ChemComp-TAR:
D(-)-TARTARIC ACID

ChemComp-HOH:
WATER

ChemComp-SO4:
SULFATE ION

ChemComp-CA:
Unknown entry

Source
  • xanthobacter autotrophicus py2 (bacteria)
  • escherichia coli (E. coli)
  • enhydrobacter aerosaccus (bacteria)
KeywordsRNA BINDING PROTEIN / Protein-nucleic acid interactions / Argonaute / pAgo / guide and target specificity / short prokaryotic Argonaute / bacterial defence system / DREN domain / DREN-APAZ

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more