[English] 日本語

- EMDB-8336: Structural basis for dynamic regulation of the human 26S proteasome -
+
Open data
-
Basic information
Entry | Database: EMDB / ID: EMD-8336 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Structural basis for dynamic regulation of the human 26S proteasome | |||||||||
![]() | The human half 26S proteasome reconstruction in the SC state focusing on the regulatory particle from 10622 particles of half 26S | |||||||||
![]() |
| |||||||||
Function / homology | ![]() positive regulation of inclusion body assembly / Impaired BRCA2 translocation to the nucleus / Impaired BRCA2 binding to SEM1 (DSS1) / thyrotropin-releasing hormone receptor binding / modulation by host of viral transcription / Hydrolases; Acting on peptide bonds (peptidases); Omega peptidases / integrator complex / proteasome accessory complex / purine ribonucleoside triphosphate binding / meiosis I ...positive regulation of inclusion body assembly / Impaired BRCA2 translocation to the nucleus / Impaired BRCA2 binding to SEM1 (DSS1) / thyrotropin-releasing hormone receptor binding / modulation by host of viral transcription / Hydrolases; Acting on peptide bonds (peptidases); Omega peptidases / integrator complex / proteasome accessory complex / purine ribonucleoside triphosphate binding / meiosis I / cytosolic proteasome complex / proteasome regulatory particle / positive regulation of proteasomal protein catabolic process / proteasome regulatory particle, lid subcomplex / proteasome-activating activity / proteasome regulatory particle, base subcomplex / metal-dependent deubiquitinase activity / regulation of endopeptidase activity / negative regulation of programmed cell death / protein K63-linked deubiquitination / Regulation of ornithine decarboxylase (ODC) / Proteasome assembly / Homologous DNA Pairing and Strand Exchange / Defective homologous recombination repair (HRR) due to BRCA1 loss of function / Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of BRCA1 binding function / Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of BRCA2/RAD51/RAD51C binding function / Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SDSA) / Cross-presentation of soluble exogenous antigens (endosomes) / Resolution of D-loop Structures through Holliday Junction Intermediates / proteasome core complex / Somitogenesis / K63-linked deubiquitinase activity / Impaired BRCA2 binding to RAD51 / proteasome binding / myofibril / transcription factor binding / regulation of protein catabolic process / immune system process / proteasome storage granule / Presynaptic phase of homologous DNA pairing and strand exchange / general transcription initiation factor binding / blastocyst development / polyubiquitin modification-dependent protein binding / protein deubiquitination / positive regulation of RNA polymerase II transcription preinitiation complex assembly / endopeptidase activator activity / proteasome assembly / NF-kappaB binding / proteasome endopeptidase complex / proteasome core complex, beta-subunit complex / threonine-type endopeptidase activity / proteasome core complex, alpha-subunit complex / mRNA export from nucleus / SARS-CoV-1 targets host intracellular signalling and regulatory pathways / inclusion body / enzyme regulator activity / ERAD pathway / regulation of proteasomal protein catabolic process / proteasome complex / sarcomere / proteolysis involved in protein catabolic process / ciliary basal body / Regulation of activated PAK-2p34 by proteasome mediated degradation / Autodegradation of Cdh1 by Cdh1:APC/C / APC/C:Cdc20 mediated degradation of Securin / N-glycan trimming in the ER and Calnexin/Calreticulin cycle / Asymmetric localization of PCP proteins / Ubiquitin-dependent degradation of Cyclin D / SCF-beta-TrCP mediated degradation of Emi1 / NIK-->noncanonical NF-kB signaling / TNFR2 non-canonical NF-kB pathway / AUF1 (hnRNP D0) binds and destabilizes mRNA / Vpu mediated degradation of CD4 / Assembly of the pre-replicative complex / Ubiquitin Mediated Degradation of Phosphorylated Cdc25A / stem cell differentiation / Degradation of DVL / Cdc20:Phospho-APC/C mediated degradation of Cyclin A / Dectin-1 mediated noncanonical NF-kB signaling / Degradation of AXIN / Hh mutants are degraded by ERAD / negative regulation of inflammatory response to antigenic stimulus / lipopolysaccharide binding / Activation of NF-kappaB in B cells / Degradation of GLI1 by the proteasome / G2/M Checkpoints / Hedgehog ligand biogenesis / P-body / Defective CFTR causes cystic fibrosis / Autodegradation of the E3 ubiquitin ligase COP1 / Negative regulation of NOTCH4 signaling / GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 / Vif-mediated degradation of APOBEC3G / Regulation of RUNX3 expression and activity / Hedgehog 'on' state / Degradation of GLI2 by the proteasome / GLI3 is processed to GLI3R by the proteasome / MAPK6/MAPK4 signaling / double-strand break repair via homologous recombination / FBXL7 down-regulates AURKA during mitotic entry and in early mitosis Similarity search - Function | |||||||||
Biological species | ![]() | |||||||||
Method | single particle reconstruction / cryo EM / Resolution: 8.0 Å | |||||||||
![]() | Chen S / Wu J / Lu Y / Ma YB / Lee BH / Yu Z / Ouyang Q / Finley D / Kirschner MW / Mao Y | |||||||||
![]() | ![]() Title: Structural basis for dynamic regulation of the human 26S proteasome. Authors: Shuobing Chen / Jiayi Wu / Ying Lu / Yong-Bei Ma / Byung-Hoon Lee / Zhou Yu / Qi Ouyang / Daniel J Finley / Marc W Kirschner / Youdong Mao / ![]() ![]() Abstract: The proteasome is the major engine of protein degradation in all eukaryotic cells. At the heart of this machine is a heterohexameric ring of AAA (ATPases associated with diverse cellular activities) ...The proteasome is the major engine of protein degradation in all eukaryotic cells. At the heart of this machine is a heterohexameric ring of AAA (ATPases associated with diverse cellular activities) proteins that unfolds ubiquitylated target proteins that are concurrently translocated into a proteolytic chamber and degraded into peptides. Using cryoelectron microscopy, we determined a near-atomic-resolution structure of the 2.5-MDa human proteasome in its ground state, as well as subnanometer-resolution structures of the holoenzyme in three alternative conformational states. The substrate-unfolding AAA-ATPase channel is narrowed by 10 inward-facing pore loops arranged into two helices that run in parallel with each other, one hydrophobic in character and the other highly charged. The gate of the core particle was unexpectedly found closed in the ground state and open in only one of the alternative states. Coordinated, stepwise conformational changes of the regulatory particle couple ATP hydrolysis to substrate translocation and regulate gating of the core particle, leading to processive degradation. | |||||||||
History |
|
-
Structure visualization
Movie |
![]() |
---|---|
Structure viewer | EM map: ![]() ![]() ![]() |
Supplemental images |
-
Downloads & links
-EMDB archive
Map data | ![]() | 161.4 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 14.6 KB 14.6 KB | Display Display | ![]() |
Images | ![]() | 63.3 KB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Validation report
Summary document | ![]() | 367.7 KB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 367.3 KB | Display | |
Data in XML | ![]() | 6.4 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 5t0iMC ![]() 8332C ![]() 8333C ![]() 8334C ![]() 8335C ![]() 8337C ![]() 5t0cC ![]() 5t0gC ![]() 5t0hC ![]() 5t0jC C: citing same article ( M: atomic model generated by this map |
---|---|
Similar structure data | |
EM raw data | ![]() Data size: 2.0 TB Data #1: Drift-corrected micrographs of human 26S proteasome holoenzyme [micrographs - single frame] Data #2: Classified particle datasets for the human proteasome in four conformational states [picked particles - multiframe - processed]) |
-
Links
EMDB pages | ![]() ![]() |
---|---|
Related items in Molecule of the Month |
-
Map
File | ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | The human half 26S proteasome reconstruction in the SC state focusing on the regulatory particle from 10622 particles of half 26S | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 0.86 Å | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
CCP4 map header:
|
-Supplemental data
-
Sample components
-Entire : 26S proteasome holoenzyme
Entire | Name: 26S proteasome holoenzyme |
---|---|
Components |
|
-Supramolecule #1: 26S proteasome holoenzyme
Supramolecule | Name: 26S proteasome holoenzyme / type: complex / ID: 1 / Parent: 0 / Macromolecule list: #1 |
---|---|
Source (natural) | Organism: ![]() |
Molecular weight | Experimental: 2.5 MDa |
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | particle |
-
Sample preparation
Concentration | 1.5 mg/mL | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Buffer | pH: 7.5 Component:
| ||||||||||||||||||
Grid | Model: C-Flat R1/1 / Material: COPPER / Mesh: 400 / Support film - Material: CARBON / Support film - topology: HOLEY ARRAY / Support film - Film thickness: 50.0 nm / Pretreatment - Type: GLOW DISCHARGE / Pretreatment - Atmosphere: AIR | ||||||||||||||||||
Vitrification | Cryogen name: ETHANE / Chamber humidity: 100 % / Chamber temperature: 277 K / Instrument: FEI VITROBOT MARK IV / Details: blotted for 2 seconds, blotting force 3. |
-
Electron microscopy
Microscope | FEI TECNAI ARCTICA |
---|---|
Image recording | Film or detector model: GATAN K2 SUMMIT (4k x 4k) / Detector mode: SUPER-RESOLUTION / Digitization - Dimensions - Width: 7420 pixel / Digitization - Dimensions - Height: 7676 pixel / Digitization - Sampling interval: 5.0 µm / Digitization - Frames/image: 3-20 / Number grids imaged: 12 / Number real images: 10367 / Average exposure time: 9.0 sec. / Average electron dose: 30.0 e/Å2 |
Electron beam | Acceleration voltage: 200 kV / Electron source: ![]() |
Electron optics | C2 aperture diameter: 50.0 µm / Calibrated magnification: 28736 / Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Cs: 2.7 mm / Nominal defocus max: -3.0 µm / Nominal defocus min: -1.0 µm / Nominal magnification: 21000 |
Sample stage | Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER / Cooling holder cryogen: NITROGEN |
Experimental equipment | ![]() Model: Talos Arctica / Image courtesy: FEI Company |
+
Image processing
-Atomic model buiding 1
Refinement | Space: REAL / Protocol: FLEXIBLE FIT / Overall B value: 150 |
---|---|
Output model | ![]() PDB-5t0i: |