Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

9EXV

Broad substrate scope C-C oxidation in cyclodipeptides catalysed by a flavin-dependent filament

Summary for 9EXV
Entry DOI10.2210/pdb9exv/pdb
EMDB information50049
DescriptorNitroreductase, AlbB, FLAVIN MONONUCLEOTIDE (3 entities in total)
Functional Keywordscyclodipeptides oxidase, oxidoreductase
Biological sourceNocardiopsis dassonvillei
More
Total number of polymer chains6
Total formula weight89221.11
Authors
Sutherland, E.,Sundaramoorthy, R.,Czekster, C.M. (deposition date: 2024-04-08, release date: 2025-02-05)
Primary citationSutherland, E.,Harding, C.J.,du Monceau de Bergendal, T.,Florence, G.J.,Ackermann, K.,Bode, B.E.,Synowsky, S.,Sundaramoorthy, R.,Czekster, C.M.
Broad substrate scope C-C oxidation in cyclodipeptides catalysed by a flavin-dependent filament.
Nat Commun, 16:995-995, 2025
Cited by
PubMed Abstract: Cyclic dipeptides are produced by organisms across all domains of life, with many exhibiting anticancer and antimicrobial properties. Oxidations are often key to their biological activities, particularly C-C bond oxidation catalysed by tailoring enzymes including cyclodipeptide oxidases. These flavin-dependent enzymes are underexplored due to their intricate three-dimensional arrangement involving multiple copies of two distinct small subunits, and mechanistic details underlying substrate selection and catalysis are lacking. Here, we determined the structure and mechanism of the cyclodipeptide oxidase from the halophile Nocardiopsis dassonvillei (NdasCDO), a component of the biosynthetic pathway for nocazine natural products. We demonstrated that NdasCDO forms filaments in solution, with a covalently bound flavin mononucleotide (FMN) cofactor at the interface between three distinct subunits. The enzyme exhibits promiscuity, processing various cyclic dipeptides as substrates in a distributive manner. The reaction is optimal at high pH and involves the formation of a radical intermediate. Pre-steady-state kinetics, a significant solvent kinetic isotope effect, and the absence of viscosity effects suggested that a step linked to FMN regeneration controlled the reaction rate. Our work elucidates the complex mechanistic and structural characteristics of this dehydrogenation reaction, positioning NdasCDO as a promising biocatalyst and expanding the FMN-dependent oxidase family to include enzyme filaments.
PubMed: 39856061
DOI: 10.1038/s41467-025-56127-y
PDB entries with the same primary citation
Experimental method
ELECTRON MICROSCOPY (3 Å)
Structure validation

240971

数据于2025-08-27公开中

PDB statisticsPDBj update infoContact PDBjnumon