9BNR
4-(2-isothiocyanatoethyl)benzenesulfonamide complexed with Macrophage Migration Inhibitory Factor
This is a non-PDB format compatible entry.
Summary for 9BNR
Entry DOI | 10.2210/pdb9bnr/pdb |
Descriptor | Macrophage migration inhibitory factor, N-[2-(4-sulfamoylphenyl)ethyl]methanethioamide, SULFATE ION, ... (4 entities in total) |
Functional Keywords | cytokine, tautomerase, isomerase, isothiocyanate, isomerase inhibitor complex |
Biological source | Homo sapiens (human) |
Total number of polymer chains | 3 |
Total formula weight | 38662.74 |
Authors | Fellner, M.,Rutledge, M.T.,Putha, L.,Kok, L.K.,Gamble, A.B.,Wilbanks, S.M.,Vernall, A.J.,Tyndall, J.D.A. (deposition date: 2024-05-02, release date: 2024-07-24) |
Primary citation | Tyndall, J.,Putha, L.,Kok, L.K.,Fellner, M.,Rutledge, M.T.,Gamble, A.B.,Wilbanks, S.M.,Vernall, A.J. Covalent isothiocyanate inhibitors of macrophage migration inhibitory factor as potential colorectal cancer treatments. Chemmedchem, :e202400394-e202400394, 2024 Cited by PubMed Abstract: Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine with roles in innate and adaptive human immune responses, as well as inflammation. MIF exerts its biological activity by binding to the cell surface receptor CD74 as well as intracellular signalling proteins. MIF also possesses keto-enol tautomerase activity. Inhibition of the tautomerase activity has been associated with loss of biological activity of MIF and a potential anticancer target. Isothiocyanates (ITCs) are a class of compounds present in cruciferous vegetables that inhibit the MIF tautomerase activity via covalent modification of the N-terminal proline. A range of substituted ITCs featuring benzyl, phenethyl and phenyl propyl isothiocyanates were designed, synthesised and tested to determine any structure activity relationship for inhibiting MIF. Crystal structures of covalent compounds 8 and 9 in complex with rhMIF revealed key hydrogen bonding and edge-to-face π stacking interactions. Compound 9 and 11 with sub micromolar activity were tested in the NCI60 cancer cell lines panel. Both compounds showed tissue-specific reduced growth in colon and renal cancer cell lines, while one of these showed potent, dose-dependent inhibition of growth against all seven colon cancer cell lines (GI50 < 2.5 µM) and all eight renal cancer cell lines (GI50 < 2.2 µM). PubMed: 38977403DOI: 10.1002/cmdc.202400394 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (1.53 Å) |
Structure validation
Download full validation report