Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

9B52

RhAAV4282 Empty Capsid

This is a non-PDB format compatible entry.
Summary for 9B52
Entry DOI10.2210/pdb9b52/pdb
EMDB information44196
DescriptorCapsid protein VP1 (1 entity in total)
Functional Keywordsaav, adeno-associated virus, empty capsid, viral protein
Biological sourceAdeno-associated virus
Total number of polymer chains1
Total formula weight58137.16
Authors
Dagotto, G.,Jenni, S.,Li, Z.,Barouch, D.H. (deposition date: 2024-03-22, release date: 2024-11-13)
Primary citationDagotto, G.,Fisher, J.L.,Li, D.,Li, Z.,Jenni, S.,Li, Z.,Tartaglia, L.J.,Abbink, P.,Barouch, D.H.
Identification of a novel neutralization epitope in rhesus AAVs.
Mol Ther Methods Clin Dev, 32:101350-101350, 2024
Cited by
PubMed Abstract: Adeno-associated viruses (AAVs) are popular gene therapy delivery vectors, but their application can be limited by anti-vector immunity. Both preexisting neutralizing antibodies (NAbs) and post-administration NAbs can limit transgene expression and reduce the clinical utility of AAVs. The development of novel AAVs will advance our understanding of AAV immunity and may also have practical applications. In this study, we identified five novel AAV capsids from rhesus macaques. RhAAV4282 exhibited 91.4% capsid sequence similarity with AAV7 and showed similar tissue tropism with slightly diminished overall signal. Despite this sequence homology, RhAAV4282 and AAV7 showed limited cross-neutralization. We determined a cryo-EM structure of the RhAAV4282 capsid at 2.57 Å resolution and identified a small segment within the hypervariable region IV, involving seven amino acids that formed a shortened external loop in RhAAV4282 compared with AAV7. We generated RhAAV4282 and AAV7 mutants that involved swaps of this region and showed that this region partially determined neutralization phenotype. We termed this region the hypervariable region IV neutralizing epitope (HRNE). Our data suggests that modification of the HRNE can lead to AAVs with altered neutralization profiles.
PubMed: 39469420
DOI: 10.1016/j.omtm.2024.101350
PDB entries with the same primary citation
Experimental method
ELECTRON MICROSCOPY (2.57 Å)
Structure validation

227561

數據於2024-11-20公開中

PDB statisticsPDBj update infoContact PDBjnumon