Loading
PDBj
メニューPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

8WIJ

Crystal structure of E. coli ThrS catalytic domain mutant L489M in complex with Obafluorin

8WIJ の概要
エントリーDOI10.2210/pdb8wij/pdb
分子名称Threonine--tRNA ligase, N-(2,3-dihydroxybenzoyl)-4-(4-nitrophenyl)-L-threonine, ZINC ION, ... (4 entities in total)
機能のキーワードthreonine--trna ligase, ligase
由来する生物種Escherichia coli
タンパク質・核酸の鎖数2
化学式量合計96774.56
構造登録者
Qiao, H.,Wang, Z.,Wang, J.,Fang, P. (登録日: 2023-09-24, 公開日: 2024-07-24)
主引用文献Qiao, H.,Wang, Z.,Yang, H.,Xia, M.,Yang, G.,Bai, F.,Wang, J.,Fang, P.
Specific glycine-dependent enzyme motion determines the potency of conformation selective inhibitors of threonyl-tRNA synthetase.
Commun Biol, 7:867-867, 2024
Cited by
PubMed Abstract: The function of proteins depends on their correct structure and proper dynamics. Understanding the dynamics of target proteins facilitates drug design and development. However, dynamic information is often hidden in the spatial structure of proteins. It is important but difficult to identify the specific residues that play a decisive role in protein dynamics. Here, we report that a critical glycine residue (Gly463) dominates the motion of threonyl-tRNA synthetase (ThrRS) and the sensitivity of the enzyme to antibiotics. Obafluorin (OB), a natural antibiotic, is a novel covalent inhibitor of ThrRS. The binding of OB induces a large conformational change in ThrRS. Through five crystal structures, biochemical and biophysical analyses, and computational simulations, we found that Gly463 plays an important role in the dynamics of ThrRS. Mutating this flexible residue into more rigid residues did not damage the enzyme's three-dimensional structure but significantly improved the thermal stability of the enzyme and suppressed its ability to change conformation. These mutations cause resistance of ThrRS to antibiotics that are conformationally selective, such as OB and borrelidin. This work not only elucidates the molecular mechanism of the self-resistance of OB-producing Pseudomonas fluorescens but also emphasizes the importance of backbone kinetics for aminoacyl-tRNA synthetase-targeting drug development.
PubMed: 39014102
DOI: 10.1038/s42003-024-06559-x
主引用文献が同じPDBエントリー
実験手法
X-RAY DIFFRACTION (3.08 Å)
構造検証レポート
Validation report summary of 8wij
検証レポート(詳細版)ダウンロードをダウンロード

227344

件を2024-11-13に公開中

PDB statisticsPDBj update infoContact PDBjnumon